cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227799 Number of composites removed in each step of the Sieve of Eratosthenes for 10^10.

This page as a plain text file.
%I A227799 #13 Jun 27 2017 15:42:34
%S A227799 4999999999,1666666666,666666666,380952380,207792207,159840159,
%T A227799 112828348,95013343,74358271,56409724,50950713,41311372,36273411,
%U A227799 33742734,30153115,26170720,23065826,21931483,19640105,18256894,17506397,15954848,14993294,13813524,12531256
%N A227799 Number of composites removed in each step of the Sieve of Eratosthenes for 10^10.
%C A227799 a(n) = the number of composites <= 10^10 for which the n-th prime is the least prime factor.
%C A227799 pi(sqrt(10^10)) = the number of terms of this sequence.
%C A227799 The sum of a(n) for n = 1..3401 = A000720(10^10) + A065855(10^10).
%H A227799 Eric F. O'Brien, <a href="/A227799/b227799.txt">Table of n, a(n) for n = 1..9592</a>
%e A227799 a(1) = 10^10 \ 2 - 1.
%e A227799 a(2) = 10^10 \ 3 - 10^10 \ (2*3) - 1.
%e A227799 a(3) = 10^10 \ 5 - 10^10 \ (2*5) - 10^10 \ (3*5) + 10^10 \ (2*3*5) - 1.
%e A227799 a(4) = 10^10 \ 7 - 10^10 \ (2*7) - 10^10 \ (3*7) - 10^10 \ (5*7) + 10^10 \ (2*3*7) + 10^10 \ (2*5*7) + 10^10 \ (3*5*7) - 10^10 \ (2*3*5*7) - 1.
%Y A227799 Cf. A133228, A145538, A145539, A145540, A145583, A227155, A227797, A227798, A145532, A145533, A145534, A145535, A145536, A145537.
%K A227799 nonn,fini
%O A227799 1,1
%A A227799 _Eric F. O'Brien_, Jul 31 2013