A227816 a(1) = greatest k such that H(k) - H(6) < H(6) - H(3); a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(6), and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.
16, 41, 103, 257, 640, 1592, 3958, 9839, 24457, 60792, 151107, 375596, 933591, 2320556, 5768028, 14337143, 35636731, 88579473, 220175161, 547272407, 1360312788, 3381224518, 8404448844, 20890289891, 51925381404, 129066913288, 320811665802, 797416799492
Offset: 1
Examples
The first two values (a(1),a(2)) = (16,41) match the beginning of the following inequality chain (and partition of the harmonic numbers H(n) for n >= 3 ): 1/3 + 1/4 + 1/5 + 1/6 > 1/7 + ... + 1/16 < 1/17 + ... + 1/41 < ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 6; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* (A227804) Peter J. C. Moses, Jul 23 2013 *)
Comments