cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227816 a(1) = greatest k such that H(k) - H(6) < H(6) - H(3); a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(6), and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.

Original entry on oeis.org

16, 41, 103, 257, 640, 1592, 3958, 9839, 24457, 60792, 151107, 375596, 933591, 2320556, 5768028, 14337143, 35636731, 88579473, 220175161, 547272407, 1360312788, 3381224518, 8404448844, 20890289891, 51925381404, 129066913288, 320811665802, 797416799492
Offset: 1

Views

Author

Clark Kimberling, Jul 31 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <=y. Let c(1) = y and c(2) = greatest k such that H(k) - H(y) < H(y) - H(x); for n > 2, let c(n) = greatest such that H(k) - H(c(n-1)) < H(c(n-1)) - H(c(n-2)). Then 1/x + ... + 1/c(1) > 1/(c(1)+1) + ... + 1/(c(2)) > 1/(c(2)+1) + ... + 1/(c(3)) > ... The decreasing sequences H(c(n)) - H(c(n-1)) and c(n)/c(n-1) converge. It appears that for many choices of (x,y), the sequence c(n) is linearly recurrent with signature of length less than 10; (3,6) is not one of them. H(c(n)) - H(c(n-1)) and c(n)/c(n-1) approach limits given by A227817 and A227818.

Examples

			The first two values (a(1),a(2)) = (16,41) match the beginning of the following inequality chain (and partition of the harmonic numbers H(n) for n >= 3 ):
1/3 + 1/4 + 1/5 + 1/6 > 1/7 + ... + 1/16 < 1/17 + ... + 1/41 <  ...
		

Crossrefs

Cf. A001008, A002805 (numerator and denominator of harmonic numbers).

Programs

  • Mathematica
    z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 6; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* (A227804) Peter J. C. Moses, Jul 23 2013 *)