This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227822 #25 Apr 02 2021 02:46:16 %S A227822 1,1,4,220,60092152,203720181459953921762400, %T A227822 7088043372247785801830314829178419617696182324188730917543544992 %N A227822 Number of permutations of [n], [n+1], ... that result in a binary search tree of height n. %C A227822 Empty external nodes are counted in determining the height of a search tree. %H A227822 Alois P. Heinz, <a href="/A227822/b227822.txt">Table of n, a(n) for n = 0..9</a> %H A227822 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a> %H A227822 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %H A227822 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A227822 a(n) = Sum_{k=n..2^n-1} A195581(k,n). %e A227822 a(2) = 4, because 4 permutations of {1,2}, {1,2,3}, ... result in a binary search tree of height 2: %e A227822 (1,2): 1 (2,1): 2 (2,1,3), (2,3,1): 2 %e A227822 / \ / \ / \ %e A227822 o 2 1 o 1 3 %e A227822 / \ / \ / \ / \ %e A227822 o o o o o o o o %p A227822 b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1), %p A227822 add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1)) %p A227822 end: %p A227822 a:= n-> add(b(k, n)-b(k, n-1), k=n..2^n-1): %p A227822 seq(a(n), n=0..6); %t A227822 b[n_, k_] := b[n, k] = If[n < 2, If[k < n, 0, 1], %t A227822 Sum[Binomial[n - 1, r]*b[r, k - 1]*b[n - 1 - r, k - 1], {r, 0, n - 1}]]; %t A227822 a[n_] := Sum[b[k, n] - b[k, n - 1], {k, n, 2^n - 1}]; %t A227822 a /@ Range[0, 6] (* _Jean-François Alcover_, Apr 02 2021, after _Alois P. Heinz_ *) %Y A227822 Column sums of A195581 and of A244108. %Y A227822 Cf. A317012. %K A227822 nonn %O A227822 0,3 %A A227822 _Alois P. Heinz_, Jul 31 2013 %E A227822 Terms corrected by _Alois P. Heinz_, Dec 08 2015