cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227830 Denominators of coefficients in expansion of x/(exp(x)-1).

Original entry on oeis.org

1, 2, 12, 1, 720, 1, 30240, 1, 1209600, 1, 47900160, 1, 1307674368000, 1, 74724249600, 1, 10670622842880000, 1, 5109094217170944000, 1, 802857662698291200000, 1, 14101100039391805440000, 1, 1693824136731743669452800000, 1, 186134520519971831808000000, 1, 37893265687455865519472640000000, 1, 759790291646040068357842010112000000, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 01 2013

Keywords

Examples

			1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600, 0, ...
		

References

  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.

Crossrefs

For numerators see A120082.

Programs

  • Mathematica
    Denominator[ CoefficientList[ Series[x/(1 - E^-x), {x, 0, 26}], x]] (* Robert G. Wilson v, Dec 29 2016 *)
  • Sage
    @cached_function
    def R(n): return -sum(R(k)/factorial(n-k+1) for k in (0..n-1)) if n>0 else 1
    print([R(n).denominator() for n in (0..31)]) # Peter Luschny, Jul 30 2015

Formula

Recurrence: R(0) = 1 and R(n) = - Sum_{k=0..n-1} R(k)/(n-k+1)! for n>=1. Then a(n) = denominator(R(n)). - Peter Luschny, Jul 30 2015