A227848 Numbers n such that Sum_{i=1..n} (i')^i == 0 (mod n), where i' is the arithmetic derivative of i.
1, 9, 71, 120, 331, 393, 728, 1223, 3697, 4123, 6791, 7391, 23911, 25099, 35287, 86442, 86716, 118034, 292411, 352970, 527255, 606425
Offset: 1
Examples
1'^1 + 2'^2 + 3'^3 + 4'^4 + 5'^5 + 6'^6 + 7'^7 + 8'^8 + 9'^9 = 0^1 + 1^2 + 1^3 + 4^4 + 1^5 + 5^6 + 1^7 + 12^8 + 6^9 = 440075277 and 440075277 / 9 = 48897253.
Programs
-
Maple
with(numtheory); ListA227848:=proc(q) local a, n, p; a:=0; for n from 1 to q do a:=a+(n*add(op(2, p)/op(1, p), p=ifactors(n)[2]))^n; if a mod n=0 then print(n); fi; od; end: ListA227848(10^6);
-
Mathematica
d[n_] := d[n] = n* Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Reap[For[n = 1, n <= 2*10^5, n++, If[Mod[Sum[d[k]^k, {k, 1, n}], n] == 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 21 2014 *)
Extensions
a(16)-a(18) from Giovanni Resta, Aug 01 2013
a(19)-a(22) from Bert Dobbelaere, Dec 23 2018
Comments