cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227848 Numbers n such that Sum_{i=1..n} (i')^i == 0 (mod n), where i' is the arithmetic derivative of i.

Original entry on oeis.org

1, 9, 71, 120, 331, 393, 728, 1223, 3697, 4123, 6791, 7391, 23911, 25099, 35287, 86442, 86716, 118034, 292411, 352970, 527255, 606425
Offset: 1

Views

Author

Paolo P. Lava, Aug 01 2013

Keywords

Comments

a(19) > 200000. - Giovanni Resta, Aug 01 2013

Examples

			1'^1 + 2'^2 + 3'^3 + 4'^4 + 5'^5 + 6'^6 + 7'^7 + 8'^8 + 9'^9 = 0^1 + 1^2 + 1^3 + 4^4 + 1^5 + 5^6 + 1^7 + 12^8 + 6^9 = 440075277 and 440075277 / 9 = 48897253.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA227848:=proc(q) local a, n, p;  a:=0;
    for n from 1 to q do a:=a+(n*add(op(2, p)/op(1, p), p=ifactors(n)[2]))^n;
    if a mod n=0 then print(n); fi; od; end: ListA227848(10^6);
  • Mathematica
    d[n_] := d[n] = n* Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Reap[For[n = 1, n <= 2*10^5, n++, If[Mod[Sum[d[k]^k, {k, 1, n}], n] == 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 21 2014 *)

Extensions

a(16)-a(18) from Giovanni Resta, Aug 01 2013
a(19)-a(22) from Bert Dobbelaere, Dec 23 2018