This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227851 #17 Nov 03 2014 02:39:16 %S A227851 1,1,8,125,3650,171440,11815940,1122759980,140645621840, %T A227851 22456283261240,4451225265169640,1072410309912462440, %U A227851 308628265617560695880,104567048162852196877640,41198829781936190483346440,18676924223093561435394148040,9652952812685808726911849225480 %N A227851 G.f.: Sum_{n>=1} n^n * x^n * Product_{k=1..n} (k + x) / (1 + n*k*x + n*x^2). %C A227851 Compare to the identity: %C A227851 Sum_{n>=0} x^n * Product_{k=1..n} (k + x) / (1 + k*x + x^2) = (1+x^2)/(1-x). %H A227851 Vaclav Kotesovec, <a href="/A227851/b227851.txt">Table of n, a(n) for n = 0..236</a> %F A227851 a(n) == 2 (mod 3) for n>1. %F A227851 a(n) == 0 (mod 5) for n>2. %F A227851 a(n) == 0 (mod 8) for n>7. %F A227851 a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - _Vaclav Kotesovec_, Nov 03 2014 %e A227851 G.f.: A(x) = 1 + x + 8*x^2 + 125*x^3 + 3650*x^4 + 171440*x^5 +... %e A227851 where %e A227851 A(x) = 1 + x*(1+x)/(1+x+x^2) + 2^2*x^2*(1+x)*(2+x)/((1+2*x+2*x^2)*(1+4*x+2*x^2)) + 3^3*x^3*(1+x)*(2+x)*(3+x)/((1+3*x+3*x^2)*(1+6*x+3*x^2)*(1+9*x+3*x^2)) + 4^4*x^4*(1+x)*(2+x)*(3+x)*(4+x)/((1+4*x+4*x^2)*(1+8*x+4*x^2)*(1+12*x+4*x^2)*(1+16*x+4*x^2)) +... %o A227851 (PARI) {a(n)=polcoeff( sum(m=0, n, m^m*x^m*prod(k=1, m, (k+x)/(1+m*k*x+m*x^2 +x*O(x^n))) ), n)} %o A227851 for(n=0, 20, print1(a(n), ", ")) %Y A227851 Cf. A204064. %K A227851 nonn %O A227851 0,3 %A A227851 _Paul D. Hanna_, Oct 31 2013