This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227855 #27 Jan 03 2014 01:37:46 %S A227855 0,1,4,5,16,20,64,65,80,81,85,145,256,260,320,324,325,340,405,580,625, %T A227855 629,689,949,1024,1025,1040,1105,1280,1296,1300,1360,1620,1649,2320, %U A227855 2401,2405,2465,2500,2501,2516,2581,2725,2756,3125,3425,3796,4096,4100,4160 %N A227855 Numbers of the form x^4 + 4*y^4. %C A227855 Since 4 is even, either x or y or both may be negative integers, because their fourth powers will then be positive. %C A227855 The only prime term in this sequence is 5; this can be proved using Sophie Germain's identity. %D A227855 Titu Andreescu and Rǎzvan Gelca, Mathematical Olympiad Challenges, New York, Birkhäuser (2009), p. 48. %H A227855 Charles R Greathouse IV, <a href="/A227855/b227855.txt">Table of n, a(n) for n = 1..10000</a> %H A227855 Graeme Taylor, <a href="http://aleph.straylight.co.uk/sophie.pdf">Identity of Sophie Germain</a>, April 1, 2006. %F A227855 x^4 + 4y^4 = (x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2). This is Sophie Germain's identity. %e A227855 80 = 2^4 + 4 * 2^4. %e A227855 81 = 3^4 + 4 * 0^4. %e A227855 85 = 3^4 + 4 * 1^4. %t A227855 nn = 10; Union[Select[Flatten[Table[x^4 + 4*y^4, {x, 0, nn}, {y, 0, nn}]], # <= nn^4 &]] (* _T. D. Noe_, Nov 08 2013 *) %o A227855 (PARI) list(lim)=my(v=List(),t); for(y=0,sqrtnint(lim\4,4), for(x=0, sqrtnint(lim\1-(t=4*y^4),4), listput(v,t+x^4))); Set(v) \\ _Charles R Greathouse IV_, Nov 07 2013 %Y A227855 Subsequences include A000583, A141046 and A001589. %K A227855 nonn,easy %O A227855 1,3 %A A227855 _Alonso del Arte_, Oct 31 2013