cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227862 A boustrophedon triangle.

This page as a plain text file.
%I A227862 #20 Oct 10 2019 10:59:54
%S A227862 1,1,2,4,3,1,1,5,8,9,24,23,18,10,1,1,25,48,66,76,77,294,293,268,220,
%T A227862 154,78,1,1,295,588,856,1076,1230,1308,1309,6664,6663,6368,5780,4924,
%U A227862 3848,2618,1310,1,1,6665,13328,19696,25476,30400,34248,36866,38176,38177
%N A227862 A boustrophedon triangle.
%C A227862 T(n, n * (n mod 2)) = A000667(n).
%H A227862 Reinhard Zumkeller, <a href="/A227862/b227862.txt">Rows n = 0..125 of table, flattened</a>
%H A227862 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>.
%H A227862 Ludwig Seidel, <a href="https://babel.hathitrust.org/cgi/pt?id=hvd.32044092897461&amp;view=1up&amp;seq=175">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the <a href="https://www.hathitrust.org/accessibility">HATHI TRUST Digital Library</a>]
%H A227862 Ludwig Seidel, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1877_0157-0187.pdf">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through <a href="https://de.wikipedia.org/wiki/ZOBODAT">ZOBODAT</a>]
%H A227862 Wikipedia, <a href="http://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>.
%H A227862 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%e A227862 First nine rows:
%e A227862 .  0:                                    1
%e A227862 .  1:                               1   ->  2
%e A227862 .  2:                           4   <-   3  <-  1
%e A227862 .  3:                       1 ->    5 ->   8   ->   9
%e A227862 .  4:                   24  <-  23  <-  18  <-  10  <-  1
%e A227862 .  5:              1  ->  25  ->  48  ->   66 ->   76  ->  77
%e A227862 .  6:          294 <-  293 <-  268 <-  220 <-  154  <-  78   <-  1
%e A227862 .  7:      1  ->  295 ->  588 ->  856 -> 1076 -> 1230 -> 1308 -> 1309
%e A227862 .  8:  6664 <- 6663 <- 6368 <- 5780 <- 4924 <- 3848 <- 2618 <- 1310  <- 1 .
%t A227862 T[0, 0] = 1; T[n_?OddQ, 0] = 1; T[n_?EvenQ, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = If[OddQ[n], T[n, k - 1] + T[n - 1, k - 1], T[n, k + 1] + T[n - 1, k]]; T[_, _] = 0;
%t A227862 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 23 2019 *)
%o A227862 (Haskell)
%o A227862 a227862 n k = a227862_tabl !! n !! k
%o A227862 a227862_row n = a227862_tabl !! n
%o A227862 a227862_tabl = map snd $ iterate ox (False, [1]) where
%o A227862    ox (turn, xs) = (not turn, if turn then reverse ys else ys)
%o A227862       where ys = scanl (+) 1 (if turn then reverse xs else xs)
%Y A227862 Cf. A008280.
%K A227862 nonn,tabl,look
%O A227862 0,3
%A A227862 _Reinhard Zumkeller_, Nov 01 2013