This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227866 #18 Dec 17 2019 05:36:39 %S A227866 1,1,4,27,64,3125,288,823543,147456,4251528,460800,285311670611, %T A227866 111974400,302875106592253,3251404800,13436928000,106542032486400, %U A227866 827240261886336764177,1053455155200000,1978419655660313589123979,102395841085440000 %N A227866 Derived from von Mangoldt matrix sequence. %C A227866 Since the logarithm of n is given by the limit of Zeta(s)*Sum_{k=1..n} ((1 - (If k mod n = 0 then n else 0))/k^(s - 1)) as s -> 1, it is natural to ask what the von Mangoldt function variant might look like starting from the table A191898, instead of table A167407. - _Mats Granvik_, Nov 11 2013 %F A227866 a(prime(n)) = A000312(prime(n)). %t A227866 Clear[nn, t, n, k, i, s]; nn = 20; t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[t[k - i, n], {i, 1, n - 1}]]; Exp[Table[Limit[Zeta[s]*Sum[If[n == 1, 0, t[n, k]]/k^(s - 1), {k, 1, n}], s -> 1], {n, 0, nn}]]*(Range[nn + 1] - 1)! %Y A227866 Cf. A000312, A036505, A177885. %K A227866 nonn %O A227866 0,3 %A A227866 _Mats Granvik_, Nov 02 2013