A227867 Number of Lipschitz quaternions X such that X^2 == 1 (mod n).
1, 8, 14, 32, 32, 112, 58, 32, 110, 256, 134, 448, 184, 464, 448, 32, 308, 880, 382, 1024, 812, 1072, 554, 448, 752, 1472, 974, 1856, 872, 3584, 994, 32, 1876, 2464, 1856, 3520, 1408, 3056, 2576, 1024, 1724, 6496, 1894, 4288, 3520, 4432, 2258, 448, 2746, 6016, 4312, 5888
Offset: 1
Links
- Wikipedia, Hurwitz quaternion.
Programs
-
Mathematica
cuaternios[n_] := Flatten[Table[{{a, -b, d, -c}, {b, a, -c, -d}, {-d, c, a, -b}, {c, d, b, a}}, {a, n}, {b, n}, {c, n}, {d, n}], 3]; invo[n_] := invo[n] = Length@Select[cuaternios[n], Mod[#.# - IdentityMatrix[4],n] == 0*# &]; Table[invo[n], {n, 1, 25}]
Extensions
More terms from Amiram Eldar, May 06 2024
Comments