This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227874 #13 Oct 06 2017 01:05:11 %S A227874 6,10,20,22,32,45,46,50,58,68,76,82,92,106,117,124,152,166,170,174, %T A227874 178,212,226,236,261,262,272,325,333,338,346,358,382,405,412,424,435, %U A227874 436,452,464,466,474,477,478,495,502,506,512,530,555,562,567,574,578,586 %N A227874 Numbers n such that tau(n+1) - tau(n) = -2, where tau(n) = the number of divisors of n (A000005). %C A227874 Numbers n such that tau(n) - tau(n+1) = 2. Numbers n such that A051950(n+1) = -2. Numbers n such that A049820(n) - A049820(n+1) = -3. %C A227874 Sequence of starts of first run of n (n>=2) consecutive integers m_1, m_2, ..., m_n such that tau(m_k) - tau(m_k-1) = -2, for all k=n...2: 6, 45, 1016, ... (a(5) > 100000); example for n=4: tau(1016) = 8, tau(1017) = 6, tau(1018) = 4, tau(1019) = 2. %H A227874 Jaroslav Krizek, <a href="/A227874/b227874.txt">Table of n, a(n) for n = 1..2000</a> %e A227874 45 is in sequence because tau(46) - tau(45) = 4 - 6 = -2. %t A227874 Select[ Range[ 50000], DivisorSigma[0, # ] - 2 == DivisorSigma[0, # + 1] &] %Y A227874 Cf. A000005. %Y A227874 Cf. A055927 (numbers n such that tau(n+1) - tau(n) = 1). %Y A227874 Cf. A230115 (numbers n such that tau(n+1) - tau(n) = 2). %Y A227874 Cf. A230653 (numbers n such that tau(n+1) - tau(n) = 3). %Y A227874 Cf. A230654 (numbers n such that tau(n+1) - tau(n) = 4). %Y A227874 Cf. A228453 (numbers n such that tau(n+1) - tau(n) = 5). %K A227874 nonn %O A227874 1,1 %A A227874 _Jaroslav Krizek_, Nov 03 2013