A227877 Number of ways to write n = x + y + z (x, y, z > 0) such that x*y and x*z are triangular numbers, and 6*y-1 and 6*z+1 are both prime.
0, 0, 1, 0, 3, 2, 2, 3, 3, 7, 3, 6, 3, 3, 2, 3, 7, 6, 7, 5, 4, 5, 10, 2, 10, 4, 5, 2, 2, 9, 5, 9, 2, 4, 3, 4, 5, 7, 5, 11, 12, 5, 8, 11, 12, 5, 11, 3, 7, 11, 4, 10, 6, 2, 9, 11, 8, 7, 9, 8, 9, 4, 3, 4, 10, 6, 9, 15, 9, 17, 3, 3, 8, 12, 10, 5, 1, 7, 9, 16, 8, 17, 6, 8, 16, 6, 8, 8, 10, 1, 6, 4, 8, 5, 23, 11, 2, 9, 6, 14
Offset: 1
Keywords
Examples
a(77) = 1 since 77 = 1 + 10 + 66, and 1*10 = 4*5/2 and 1*66 = 11*12/2 are triangular numbers, and 6*10 - 1 = 59 and 6*66 + 1 = 397 are both prime. a(90) = 1 since 90 = 45 + 22 + 23, and 45*22 = 44*45/2 and 45*23 = 45*46/2 are triangular numbers, and 6*22 - 1 = 131 and 6*23 + 1 = 139 are both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, A new conjecture on triangular numbers, a message to Number Theory List, Oct. 25, 2013.
Programs
-
Mathematica
TQ[n_]:=IntegerQ[Sqrt[8n+1]] a[n_]:=Sum[If[PrimeQ[6j-1]&&PrimeQ[6(n-i-j)+1]&&TQ[i*j]&&TQ[i(n-i-j)],1,0],{i,1,n-2},{j,1,n-1-i}] Table[a[n],{n,1,100}]
Comments