This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227880 #16 Oct 30 2023 07:28:30 %S A227880 2,3,5,7,13,29,31,61,89,127,149,233,401,509,773,1021,1597,4093,8191, %T A227880 16381,28657,31489,128257,131071,514229,524287,1048573,4194301, %U A227880 5976577,16777213,433494437,536870909,2147483647,2971215073,4293722117,5350220959,13435170943 %N A227880 Primes in the union of all n-Fibonacci sequences. %H A227880 T. D. Noe, <a href="/A227880/b227880.txt">Table of n, a(n) for n = 1..127</a> (first 62 terms from Robert Price) %H A227880 Tony D. Noe and Jonathan Vos Post, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Noe/noe5.html">Primes in Fibonacci n-step and Lucas n-step Sequences,</a> J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4 %F A227880 Primes in A124168. %t A227880 plst = {};plimit=10^39; For[n = 2, n ≤ 1 + Log[2, plimit], n++,flst = {};For[i = 1, i < n, i++, AppendTo[flst, 0]];AppendTo[flst, 1];For[k = 2, k ≤ 1 + Log[GoldenRatio, plimit*Sqrt[5] + 0.5], k++,sum = 0;For[j = 0, j < n, j++, sum = sum + flst[[j + k - 1]]];AppendTo[flst, sum];If[sum ≤ plimit && PrimeQ[sum], AppendTo[plst, sum]]]];Union[plst] %Y A227880 Cf. A124168, A000045, A000073, A000078, A001591, A001592, A124257. %K A227880 nonn %O A227880 1,1 %A A227880 _Robert Price_, Oct 25 2013