This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227887 #28 Oct 02 2023 16:23:48 %S A227887 1,1,17,1585,485729,372281761,601378506737,1820943071778385, %T A227887 9489456505643743169,79759396929125826861121, %U A227887 1027412704023984825792488657,19464301715272748317827942755185,524230105465412991467916306841439009,19509134827116013764271741468197795034081 %N A227887 O.g.f.: 1/(1 - x/(1 - 2^4*x/(1 - 3^4*x/(1 - 4^4*x/(1 - 5^4*x/(1 - 6^4*x/(1 -...))))))), a continued fraction. %C A227887 Compare to the continued fraction for the Euler numbers (A000364): %C A227887 1/(1-x/(1-2^2*x/(1-3^2*x/(1-4^2*x/(1-5^2*x/(1-6^2*x/(1-...))))))). %C A227887 From _Vaclav Kotesovec_, Sep 24 2020: (Start) %C A227887 In general, if s>0 and g.f. = 1/(1 - x/(1 - 2^s*x/(1 - 3^s*x/(1 - 4^s*x/(1 - 5^s*x/(1 - 6^s*x/(1 -...))))))), a continued fraction, then %C A227887 a(n,s) ~ c(s) * d(s)^n * (n!)^s / sqrt(n), where %C A227887 d(s) = (2*s*Gamma(2/s) / Gamma(1/s)^2)^s %C A227887 c(s) = sqrt(s*d(s)/(2*Pi)). (End) %F A227887 a(n) ~ c * d^n * (n!)^4 / sqrt(n), where d = 4096 * Pi^2 / Gamma(1/4)^8 = 1.353976395034780345656335026823167975194... and c = sqrt(2*d/Pi) = 64 * sqrt(2*Pi) / Gamma(1/4)^4 = 0.9284223954634658948993105287957575... - _Vaclav Kotesovec_, Aug 25 2017, updated Sep 23 2020 %e A227887 G.f.: A(x) = 1 + x + 17*x^2 + 1585*x^3 + 485729*x^4 + 372281761*x^5 +... %p A227887 T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) %p A227887 else (k - n - 1)^4 * T(n, k - 1) + T(n - 1, k) fi fi end: %p A227887 a := n -> T(n, n): seq(a(n), n = 0..13); # _Peter Luschny_, Oct 02 2023 %t A227887 nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^4*x]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 25 2017 *) %o A227887 (PARI) {a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^4*x*CF)); polcoeff(CF, n)} %o A227887 for(n=0, 20, print1(a(n), ", ")) %Y A227887 Cf. A000364, A216966, A337807, A337808, A337809. %K A227887 nonn %O A227887 0,3 %A A227887 _Paul D. Hanna_, Oct 26 2013