A227898 Number of primes p < n with p + 6 and n + (n - p)^2 both prime.
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 4, 3, 2, 2, 3, 3, 3, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 2, 5, 5, 2, 5, 4, 2, 4, 5, 2, 7, 5, 3, 4, 5, 3, 3, 4, 4, 3, 5, 4, 9, 9, 2, 5, 3, 4, 8, 6, 2, 5, 8, 3, 4, 7, 3, 10, 5, 2, 7, 4, 5, 10, 6, 4, 6, 6, 2, 6, 8, 3, 6, 5, 3, 6, 6, 5, 9, 4, 5, 7, 5, 4, 9, 10
Offset: 1
Keywords
Examples
a(6) = 1 since 5, 5 + 6 = 11 and 6 + (6 - 5)^2 = 7 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[Prime[i]+6]&&PrimeQ[n+(n-Prime[i])^2],1,0],{i,1,PrimePi[n-1]}] Table[a[n],{n,1,100}]
Comments