cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227914 Length of longest chain of nonempty proper subsemigroups of the symmetric inverse monoid.

This page as a plain text file.
%I A227914 #30 May 16 2016 03:05:09
%S A227914 1,6,25,116,722,5956,59243,667500,8296060,112406158,1648441865,
%T A227914 26016230581,439698829588,7923291500266,151636272041063,
%U A227914 3071397457222772,65637064987470128,1475783903907314842,34822081020977308581,860290584362463964031,22206678791494395506940,597775158911764084886982,16751152450234618859184419,487867395080603697285978385,14745549219503008426659528806
%N A227914 Length of longest chain of nonempty proper subsemigroups of the symmetric inverse monoid.
%H A227914 Gheorghe Coserea, <a href="/A227914/b227914.txt">Table of n, a(n) for n = 1..200</a>
%H A227914 P. J. Cameron, M. Gadouleau, J. D. Mitchell, Y. Peresse, <a href="http://arxiv.org/abs/1501.06394">Chains of subsemigroups</a>, arXiv preprint arXiv:1501.06394 [math.GR], 2015.
%H A227914 O. Ganyushkin and I. Livinsky, <a href="http://www.mathnet.ru/links/b418d2ec0c8ec6acf4ff400ce89e9105/adm129.pdf">Length of the inverse symmetric semigroup</a>, Algebra Discrete Math., 12 (2011) 64-71.
%t A227914 a[ n_] := Sum[ Binomial[ n, k] (Ceiling[3 k/2] - Total[IntegerDigits[ k, 2]] + 1) + Binomial[ Binomial[ n, k], 2] k! - 1, {k, n}]; (* _Michael Somos_, Feb 25 2014 *)
%o A227914 (PARI)
%o A227914 A007238(n) = ceil(3*n/2) - hammingweight(n) - 1;
%o A227914 a(n) = { sum(i = 1, n+1, my(Ni = binomial(n, i-1));
%o A227914   Ni * (A007238(i-1) + 2) + Ni*(Ni-1)/2 * (i-1)! - 1) };
%o A227914 vector(25, n, a(n))  \\ _Gheorghe Coserea_, May 15 2016
%Y A227914 Cf. A007238.
%K A227914 nonn
%O A227914 1,2
%A A227914 _James Mitchell_, Oct 13 2013