cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227916 Primes that remain prime when the leftmost digit is removed.

This page as a plain text file.
%I A227916 #23 May 10 2014 09:55:16
%S A227916 13,17,23,37,43,47,53,67,73,83,97,103,107,113,131,137,167,173,179,197,
%T A227916 211,223,229,241,271,283,307,311,313,317,331,337,347,353,359,367,373,
%U A227916 379,383,389,397,419,431,443,461,467,479,503,523,541,547,571,607,613,617
%N A227916 Primes that remain prime when the leftmost digit is removed.
%H A227916 K. D. Bajpai, <a href="/A227916/b227916.txt">Table of n, a(n) for n = 1..10000</a>
%e A227916 a(11)= 97 which is prime. Removing the leftmost digit gives 7, also prime.
%e A227916 a(28)= 311 which is prime. Removing the leftmost digit gives 11, also prime.
%p A227916 KD:= proc() local a,b,c,d; a:=ithprime(n);b:=length(a); c:=floor(a/(10^(b-1)));d:=a-c*(10^(b-1));if isprime(d) then return(a):fi; end:seq(KD(),n=1..5000);
%Y A227916 Cf. A000040 (prime numbers), A024785 (left-truncatable primes).
%Y A227916 Cf. A137812 (left- or right-truncatable primes).
%Y A227916 Cf. A227919 (primes which remain prime when rightmost digit is removed).
%K A227916 nonn,base
%O A227916 1,1
%A A227916 _K. D. Bajpai_, Oct 13 2013