This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227917 #45 Apr 26 2021 12:18:43 %S A227917 1,4,26,232,2624,35888,575280,10569984,218911872,5044346112, %T A227917 127980834816,3544627393536,106408500206592,3441351475359744, %U A227917 119279906031888384,4410902376303722496,173335758665503997952,7213199863532804702208,316878056718379090771968 %N A227917 Number of semi-increasing binary plane trees with n vertices. %C A227917 a(n) is the number of semi-increasing plane binary trees with n vertices, which are labeled binary plane trees where each vertex with two children has a label less than the label of each of its descendants. %H A227917 Brad R. Jones, <a href="/A227917/b227917.txt">Table of n, a(n) for n = 1..100</a> %H A227917 B. R. Jones, <a href="http://summit.sfu.ca/item/14554">On tree hook length formulas, Feynman rules and B-series</a>, Master's thesis, Simon Fraser University, 2014. %F A227917 E.g.f.: 2/(2+log(1-2*x))-1. %F A227917 E.g.f. A(x) satisfies the differential equation A'(x) = (1+2*A(x)+A(x)^2)/(1-2*x). %F A227917 a(n) ~ n! * 2^(n+1)*exp(2*n)/(exp(2)-1)^(n+1). - _Vaclav Kotesovec_, Oct 30 2013 %F A227917 a(n) = Sum_{k=1..n} |Stirling1(n,k)| * k! * 2^(n-k). - _Ilya Gutkovskiy_, Apr 26 2021 %e A227917 Examples of some semi-increasing binary plane trees of 4 vertices: %e A227917 ---------- %e A227917 1 %e A227917 / \ %e A227917 4 2 %e A227917 / %e A227917 3 %e A227917 ---------- %e A227917 1 %e A227917 / \ %e A227917 3 2 %e A227917 / %e A227917 4 %e A227917 ---------- %e A227917 3 %e A227917 / %e A227917 1 %e A227917 / \ %e A227917 4 2 %e A227917 ---------- %e A227917 3 %e A227917 / %e A227917 1 %e A227917 \ %e A227917 2 %e A227917 \ %e A227917 4 %e A227917 ---------- %e A227917 1 %e A227917 / %e A227917 2 %e A227917 \ %e A227917 3 %e A227917 / %e A227917 4 %e A227917 ---------- %e A227917 The following is NOT a semi-increasing binary tree because vertex 2 has two children and has vertex 1 as a descendant. %e A227917 ---------- %e A227917 2 %e A227917 / \ %e A227917 3 4 %e A227917 / %e A227917 1 %e A227917 ---------- %p A227917 seq(coeff(taylor(2/(2+log(1-2*z))-1, z, 51), z^i)*i!, i=1..50); %t A227917 Rest[CoefficientList[Series[2/(2+Log[1-2*x])-1, {x,0,20}], x]*Range[0,20]!] (* _Vaclav Kotesovec_, Oct 30 2013 *) %K A227917 nonn %O A227917 1,2 %A A227917 _Brad R. Jones_, Oct 22 2013