cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227918 Sum over all permutations beginning and ending with ascents, and without double ascents on n elements and each permutation contributes 2 to the power of the number of double descents.

This page as a plain text file.
%I A227918 #21 Oct 02 2023 20:23:47
%S A227918 1,0,5,22,137,956,7653,68874,688745,7576192,90914309,1181886014,
%T A227918 16546404201,248196063012,3971137008197,67509329139346,
%U A227918 1215167924508233,23088190565656424,461763811313128485,9697040037575698182,213334880826665360009,4906702259013303280204,117760854216319278724901
%N A227918 Sum over all permutations beginning and ending with ascents, and without double ascents on n elements and each permutation contributes 2 to the power of the number of double descents.
%H A227918 R. Ehrenborg and J. Jung, <a href="http://dx.doi.org/10.1016/j.aam.2012.08.004">Descent pattern avoidance</a>, Adv. in Appl. Math., 49 (2012) 375-390.
%F A227918 E.g.f.: (exp(x) - 4 + 4*exp(-x))/(1-x) - 1 + 2*x.
%F A227918 Closest integer to (e - 4 + 4/e)*n! for n > 7.
%F A227918 a(n) = n*a(n-1) + 1 + 4*(-1)^n.
%F A227918 Conjecture: a(n) -n*a(n-1) -a(n-2) +(n-2)*a(n-3) = 0. - _R. J. Mathar_, Jul 17 2014
%e A227918 a(4) = 5 since the sum is over the five permutations 1324, 1423, 2314, 2413 and 3412, and each of them contribute 1 to the sum, since none of them has a double descent.
%t A227918 a[2] = 1; a[n_] := n*a[n - 1] + 1 + 4 (-1)^n;  Table[a[n], {n, 2, 20}] (* _Wesley Ivan Hurt_, May 04 2014 *)
%Y A227918 Cf. A000166, A230071, A055596.
%K A227918 nonn
%O A227918 2,3
%A A227918 _Richard Ehrenborg_, Oct 08 2013