cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227920 Number of ways to write n = x + y + z with y and z distinct and greater than x such that 6*x-1, 6*y-1, 6*x*y-1 are Sophie Germain primes and {6*x-1, 6*x+1}, {6*z-1, 6*z+1}, {6*x*z-1, 6*x*z+1} are twin prime pairs.

Table of values

n a(n)
1 0
2 0
3 0
4 0
5 0
6 1
7 1
8 3
9 1
10 3
11 1
12 2
13 4
14 1
15 3
16 1
17 3
18 4
19 1
20 4
21 2
22 5
23 4
24 1
25 4
26 4
27 3
28 5
29 1
30 3
31 2
32 3
33 8
34 2
35 6
36 4
37 4
38 7
39 2
40 6
41 5
42 3
43 8
44 2
45 6
46 6
47 3
48 10
49 2
50 8
51 4
52 4
53 10
54 2
55 9
56 4
57 4
58 6
59 1
60 7
61 4
62 4
63 8
64 5
65 3
66 6
67 4
68 7
69 1
70 3
71 5
72 2
73 10
74 3
75 7
76 5
77 3
78 11
79 3
80 9
81 4
82 5
83 6
84 1
85 7
86 5
87 5
88 9
89 4
90 6
91 4
92 6
93 9
94 2
95 5
96 4
97 3
98 5
99 2
100 6

List of values

[0, 0, 0, 0, 0, 1, 1, 3, 1, 3, 1, 2, 4, 1, 3, 1, 3, 4, 1, 4, 2, 5, 4, 1, 4, 4, 3, 5, 1, 3, 2, 3, 8, 2, 6, 4, 4, 7, 2, 6, 5, 3, 8, 2, 6, 6, 3, 10, 2, 8, 4, 4, 10, 2, 9, 4, 4, 6, 1, 7, 4, 4, 8, 5, 3, 6, 4, 7, 1, 3, 5, 2, 10, 3, 7, 5, 3, 11, 3, 9, 4, 5, 6, 1, 7, 5, 5, 9, 4, 6, 4, 6, 9, 2, 5, 4, 3, 5, 2, 6]