cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227922 Numbers whose digits are prime and which retain this property when multiplied by some 1-digit prime (i.e., one of 2, 3, 5 or 7).

This page as a plain text file.
%I A227922 #34 Jan 05 2014 02:51:25
%S A227922 5,7,25,55,75,325,555,755,775,2525,2575,3225,3325,5325,5555,7525,7555,
%T A227922 7575,7775,25775,32225,33225,33325,53225,53325,55555,75325,75555,
%U A227922 75775,77525,77575,77775
%N A227922 Numbers whose digits are prime and which retain this property when multiplied by some 1-digit prime (i.e., one of 2, 3, 5 or 7).
%C A227922 Motivated by Gardner's puzzle, which reads: In the following calculation,
%C A227922 |   PPP
%C A227922 |  x PP
%C A227922 |------
%C A227922 |  PPPP
%C A227922 | PPPP
%C A227922 |------
%C A227922 | PPPPP
%C A227922 replace each P by some prime digit, to produce a correct calculation.
%D A227922 Martin Gardner, "The Unexpected Hanging and Other Mathematical Diversions", University of Chicago Press (November 1991), ISBN: 978-0226282565.
%H A227922 Charles R Greathouse IV, <a href="/A227922/b227922.txt">Table of n, a(n) for n = 1..1000</a>
%H A227922 "Mathematically Possible", <a href="http://www.facebook.com/photo.php?fbid=1407969406083700">PPP x PP = PPPPP</a>, on facebook.com.
%e A227922 a(1)=5 is in the sequence because 5x5=25 which has only prime digits.
%e A227922 a(2)=7 is in the sequence because 7x5=35 has only prime digits.
%e A227922 a(3)=25 is in the sequence because 25x3=75 has only prime digits.
%o A227922 (PARI) {(p(x)=Set(isprime(digits(x)))==[1]);for(x=2,1e5,p(x)&&forprime(q=2,9,p(x*q)&&!print1(x",")&&break))}
%o A227922 (PARI) conv(v)=subst(Pol(apply(k->[2,3,5,7][k+1],v)),'x,10)
%o A227922 isA046034(n)=!#setminus(Set(digits(n)),[2,3,5,7])
%o A227922 for(d=1,7,forstep(k=4^d+2,2*4^d-1,[1,3],n=conv(digits(k,4)[2..d+1]); if(vecmax(apply(isA046034, [2,3,5,7]*n)), print1(n", ")))) \\ _Charles R Greathouse IV_, Jan 05 2014
%Y A227922 A subsequence of A046034.
%K A227922 nonn,base
%O A227922 1,1
%A A227922 _M. F. Hasler_, Oct 12 2013