This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227925 #19 Jul 23 2025 05:39:24 %S A227925 1,1,2,1,2,2,1,3,4,2,1,2,5,4,2,1,4,8,7,4,2,1,2,8,10,7,4,2,1,4,13,14, %T A227925 12,7,4,2,1,3,12,19,16,12,7,4,2,1,4,17,26,25,18,12,7,4,2,1,2,16,29,32, %U A227925 27,18,12,7,4,2,1,6,24,41,45,38,29,18,12,7,4,2,1,2,19,44,55,51,40,29,18,12,7,4,2,1 %N A227925 Triangle read by rows: number of espalier polycubes counted by height and volume. %C A227925 A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell with coordinate (0,b,c) belonging to the first plateau is such that b , c >= 0. If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau. %C A227925 An espalier polycube is a special pyramid such that each plateau contains the cell with coordinate (a,0,0). %F A227925 The number n_{i,j,h,v} of espaliers of volume v, height h and such that the highest plateau has volume i * j is given by the recurrence: %F A227925 n_{i,j,h,v} = \sum_{0 <= a <= (i*j*h-v)/((h-1)j)} \sum_{0 <= b <= %F A227925 (j(h(i+a)-a)-v)/((i+a)(k-1))} n_{i+a,j+a,h-1,v-ij} %F A227925 The number of espaliers of volume v and height h is given by %F A227925 n_{h,v}=\sum_{i*j<=v}n_{i,j,h,v} %p A227925 calcRecEsp:=proc(i, j, k, l) option remember; ## Compute the number %p A227925 n_{i,j,k,l} %p A227925 if (l<0) then 0 %p A227925 elif (i*j*k>l) then 0 %p A227925 elif k=1 then %p A227925 if (i*j=l) then %p A227925 1 %p A227925 else 0; %p A227925 fi; %p A227925 else %p A227925 s:=0; a:=0; b:=0; %p A227925 while ((i+a)*j*(k-1)<=l-i*j) do %p A227925 b:=0; %p A227925 while ((i+a)*(j+b)*(k-1)<=l-i*j) do %p A227925 s:=s+calcRecEsp(i+a, j+b, k-1, l-i*j); %p A227925 b:=b+1; %p A227925 od; %p A227925 a:=a+1; %p A227925 od; %p A227925 s; %p A227925 fi; %p A227925 end; %p A227925 compteEsp:=proc(l) ### compute \sum_{v}n_{h,v}t^v %p A227925 s:=0; %p A227925 for k to l do %p A227925 i:=1: %p A227925 while (i*k<=l) do %p A227925 j:=1; %p A227925 while (i*k*j<=l) do %p A227925 s:=s+t^k*calcRecEsp(i, j, k, l); %p A227925 j:=j+1; %p A227925 od: %p A227925 i:=i+1; %p A227925 od; %p A227925 od; %p A227925 s; %p A227925 end; %p A227925 [1,seq(op(convert(compteEsp(ii),list)), ii=2..200)]; %Y A227925 The numbers of espaliers counted by volume are given by A229915 %K A227925 nonn,tabl %O A227925 0,3 %A A227925 _Matthieu Deneufchâtel_, Oct 09 2013