A227926 Triangle read by rows: number of pyramid polycubes counted by height and volume.
1, 2, 1, 2, 4, 1, 3, 8, 4, 1, 2, 16, 10, 4, 1, 4, 22, 22, 10, 4, 1, 2, 36, 40, 24, 10, 4, 1, 4, 47, 66, 46, 24, 10, 4, 1, 3, 60, 110, 84, 48, 24, 10, 4, 1, 4, 83, 158, 144, 90, 48, 24, 10, 4, 1, 2, 100, 233, 232, 162, 92, 48, 24, 10, 4, 1, 6, 116, 327, 357, 266, 168, 92, 48, 24, 10, 4, 1, 2, 148, 444, 544, 435, 284, 170, 92, 48, 24, 10, 4, 1
Offset: 1
Links
- David Goodger, Polycubes: Puzzles & Solutions
Crossrefs
The numbers of pyramids counted by volume are given by A229914.
Programs
-
Maple
calcPyr:=proc(i,j,k,l) option remember; if (l<0) then 0 elif (i*j*k>l) then 0 elif k=1 then if (i*j=l) then 1 else 0;fi; else s:=0; a:=0;b:=0; while ((i+a)*j*(k-1)<=l-i*j) do b:=0; while ((i+a)*(j+b)*(k-1)<=l-i*j) do s:=s+(a+1)*(b+1)*calcPyr(i+a,j+b,k-1,l-i*j); b:=b+1; od; a:=a+1; od; s; fi; end; countPyr:=proc(l) s:=0; for k to l do i:=1: while (i*k<=l) do j:=1; while (i*k*j<=l) do s:=s+t^k*calcRecPyr(i,j,k,l); j:=j+1; od: i:=i+1; od; od; s; end; [1,seq(countPyr(ii),ii=1..200)];
Formula
The number n_{i,j,h,v} of pyramids of volume v, height h and such that the highest plateau has volume i * j is given by the recurrence: n_{i,j,h,v} = Sum_{a=0..(i*j*h-v)/((h-1)*j)} Sum_{b=0..(j*(h*(i+a)-a)-v)/((i+a)*(k-1))} (a+1)*(b+1)*n_{i+a,j+a,h-1,v-i*j}.
Comments