cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227934 G.f.: Sum_{n>=0} x^n / (1-x)^(n^4).

This page as a plain text file.
%I A227934 #8 Oct 06 2013 14:09:45
%S A227934 1,1,2,18,219,4395,129280,4970984,257765641,16781325293,1348125117404,
%T A227934 132465548869248,15490711962965785,2134540479514352751,
%U A227934 343307151209151099650,63606662918084631874716,13470938654397531939066909,3238387688528230753569245297,876825599524773154743990986391
%N A227934 G.f.: Sum_{n>=0} x^n / (1-x)^(n^4).
%F A227934 a(n) = Sum_{k=0..n} binomial(k^4 + n-k-1, n-k).
%e A227934 G.f.: A(x) = 1 + x + 2*x^2 + 18*x^3 + 219*x^4 + 4395*x^5 + 129280*x^6 +...
%e A227934 where
%e A227934 A(x) = 1 + x/(1-x) + x^2/(1-x)^16 + x^3/(1-x)^81 + x^4/(1-x)^256 + x^5/(1-x)^625 + x^6/(1-x)^1296 + x^7/(1-x)^2401 +...
%o A227934 (PARI) {a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^4)),n)}
%o A227934 for(n=0,20,print1(a(n),", "))
%o A227934 (PARI) {a(n)=sum(k=0,n,binomial(k^4+n-k-1, n-k))}
%o A227934 for(n=0,20,print1(a(n),", "))
%Y A227934 Cf. A178325, A230050, A227935.
%K A227934 nonn
%O A227934 0,3
%A A227934 _Paul D. Hanna_, Oct 06 2013