This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227935 #9 Feb 07 2025 00:35:31 %S A227935 1,1,2,34,773,36656,3001377,333647780,58561139773,13838291852092, %T A227935 4280413527001849,1779704699369214238,931039792575220097699, %U A227935 604786686422678514970170,489307443863919174036440087,478922652139578822529676247092,560120417434857039499787289137249 %N A227935 G.f.: Sum_{n>=0} x^n / (1-x)^(n^5). %F A227935 a(n) = Sum_{k=0..n} binomial(k^5 + n-k-1, n-k). %e A227935 G.f.: A(x) = 1 + x + 2*x^2 + 34*x^3 + 773*x^4 + 36656*x^5 + 3001377*x^6 +... %e A227935 where %e A227935 A(x) = 1 + x/(1-x) + x^2/(1-x)^32 + x^3/(1-x)^243 + x^4/(1-x)^1024 + x^5/(1-x)^3125 + x^6/(1-x)^7776 +... %o A227935 (PARI) {a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^5)),n)} %o A227935 for(n=0,20,print1(a(n),", ")) %o A227935 (PARI) {a(n)=sum(k=0,n,binomial(k^5+n-k-1, n-k))} %o A227935 for(n=0,20,print1(a(n),", ")) %Y A227935 Cf. A178325, A230050, A227934. %K A227935 nonn %O A227935 0,3 %A A227935 _Paul D. Hanna_, Oct 06 2013