cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A230040 Number of ways to write n = x + y + z with y <= z such that all the five numbers 6*x-1, 6*y-1, 6*z-1, 6*x*y-1 and 6*x*z-1 are Sophie Germain primes.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 3, 1, 3, 4, 5, 2, 1, 1, 3, 4, 4, 3, 4, 6, 5, 2, 2, 6, 5, 1, 2, 4, 2, 2, 3, 6, 5, 7, 6, 2, 3, 4, 4, 2, 3, 5, 1, 4, 7, 4, 6, 3, 9, 4, 2, 5, 4, 3, 9, 2, 4, 3, 6, 3, 5, 8, 8, 5, 8, 6, 2, 4, 3, 4, 1, 6, 4, 3, 8, 8, 6, 6, 9, 11, 2, 4, 2, 8, 3, 4, 6, 10, 5, 11, 7, 8, 6, 10, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 06 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2.
This implies that 6*n-3 with n > 2 can be expressed as a sum of three Sophie Germain primes (i.e., those primes p with 2*p+1 also prime).
We have verified the conjecture for n up to 10^8. Note that any Sophie Germain prime p > 3 has the form 6*k-1.

Examples

			a(4) = 2, since 4 = 1 + 1 + 2 = 2 + 1 + 1, and 6*1-1=5 and 6*2-1=11 are Sophie Germain primes.
a(26) = 1, since 26 = 15 + 2 + 9, and all the five numbers 6*15-1=89, 6*2-1=11, 6*9-1=53, 6*15*2-1=179 and 6*15*9=809 are Sophie Germain primes.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=PrimeQ[n]&&PrimeQ[2n+1]
    a[n_]:=Sum[If[SQ[6i-1]&&SQ[6j-1]&&SQ[6(n-i-j)-1]&&SQ[6i*j-1]&&SQ[6*i(n-i-j)-1],1,0],{i,1,n-2},{j,1,(n-i)/2}]
    Table[a[n],{n,1,100}]
Showing 1-1 of 1 results.