A227948 Zeroless numbers n such that n + (product of digits of n) and n - (product of digits of n) are prime.
21, 23, 27, 29, 81, 83, 253, 293, 299, 343, 347, 349, 431, 437, 439, 471, 473, 477, 529, 623, 653, 659, 677, 743, 893, 1123, 1219, 1253, 1257, 1297, 1423, 1489, 1521, 1523, 1529, 1587, 1589, 1657, 1763, 1853, 1867, 1927, 2151, 2167, 2239, 2277, 2279, 2321, 2327, 2329, 2377, 2413, 2443, 2459, 2467, 2497, 2543, 2569
Offset: 1
Examples
29 - 2*9 = 11 (prime) and 29 + 2*9 = 47 (prime) so 29 is a member of this sequence. 743 - 7*4*3 = 659 (prime) and 743 + 7*4*3 = 827 (prime) so 743 is a member of this sequence.
Programs
-
PARI
for(n=1,5000,d=digits(n);p=prod(i=1,#d,d[i]);if(p&&isprime(n+p)&&isprime(n-p),print1(n,", "))) \\ Derek Orr, Apr 05 2015
-
Python
from sympy import isprime def DP(n): p = 1 for i in str(n): p *= int(i) return p {print(n,end=', ') for n in range(5000) if DP(n) and isprime(n+DP(n)) and isprime(n-DP(n))} ## Simplified by Derek Orr, Apr 05 2015
Extensions
More terms from Derek Orr, Apr 05 2015
Comments