cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227965 a(1) = least k such that 1 + 1/2 < H(k) - H(2); a(2) = least k such that H(a(1)) - 1/2 < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.

Original entry on oeis.org

11, 53, 249, 1164, 5435, 25371, 118428, 552798, 2580343, 12044484, 56221045, 262427666, 1224955522, 5717827134, 26689578960, 124581175389, 581517950673, 2714399875409, 12670230858892, 59141894115145, 276061555506087, 1288595564424512, 6014885070144844
Offset: 1

Views

Author

Clark Kimberling, Aug 01 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <=y. Let a(1) = least k such that H(y) - H(x-1) < H(k) - H(y); let a(2) = least k such that H(a(1)) - H(y) < H(k) - H(a(1)); and for n > 2, let a(n) = least k such that greatest such H(a(n-1)) - H(a(n-2)) < H(k) - H(a(n-1)). The increasing sequences H(a(n)) - H(a(n-1)) and a(n)/a(n-1) converge. For what choices of (x,y) is the sequence a(n) linearly recurrent?
For A227965, (x,y) = (1,2); H(a(n)) - H(a(n-1)) approaches a limit 1.540684... given by A227966, and a(n)/a(n-1) approaches a limit 4.6677834... given by A227967. It is unknown whether the sequence a(n) is linearly recurrent.

Examples

			The first two values (a(1),a(2)) = (11,53) match the beginning of the following inequality chain (and partition of the harmonic numbers):  1/1 + 1/2 < 1/3 + ... + 1/11 < 1/12 + ... + 1/53 < ...
		

Crossrefs

Programs

  • Mathematica
    z = 300; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 1; y = 2;
    a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
    m = Map[a, Range[z]] (* A227965 *)
    t = N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 60]
    Last[RealDigits[t, 10]]  (* A227966 *)
    t = N[Table[a[t]/a[t - 1], {t, 2, z, 50}], 60]
    Last[RealDigits[t, 10]]  (* A227967 *)
    (* A227965,  Peter J. C. Moses, Jul 12 2013*)

A227966 Decimal expansion of limit of H(c(n)) - H(c(n-1)), where c = A227965 and H = harmonic number.

Original entry on oeis.org

1, 5, 4, 0, 6, 8, 4, 3, 2, 6, 4, 8, 6, 0, 7, 1, 6, 4, 5, 0, 6, 1, 5, 6, 1, 5, 0, 7, 2, 9, 3, 9, 2, 0, 5, 2, 0, 1, 8, 7, 5, 2, 5, 9, 6, 7, 2, 6, 2, 2, 8, 6, 5, 7, 3, 5, 4, 4, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Aug 01 2013

Keywords

Comments

See A227965.

Examples

			1.54068432648607164506156150729392052018...
		

Crossrefs

Cf. A001008, A002805 (numerator and denominator of harmonic numbers).

Programs

Showing 1-2 of 2 results.