This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227969 #12 Aug 02 2013 11:20:54 %S A227969 3,9,11,27,37,101,41,271,7,13,239,4649,73,137,81,333667,9091,21649, %T A227969 513239,9901,53,79,265371653,909091,31,2906161,17,5882353,2071723, %U A227969 5363222357,19,52579,1111111111111111111,3541,27961,43,1933,10838689,23,121,4093,8779,11111111111111111111111 %N A227969 Powers of primes other than 2 and 5 in order by cycle length of reciprocal in decimal. %H A227969 Charles R Greathouse IV, <a href="/A227969/b227969.txt">Rows n = 1..100 of triangle, flattened</a> %e A227969 3 and 9 qualify for the first 2 terms because both of them have a reciprocal cycle of 1. Then 11 has a reciprocal cycle of 2; then 27 and 37 have 3; then 101 has 4; then 41 and 271 have 5. Table begins: %e A227969 3, 9; %e A227969 11; %e A227969 27, 37; %e A227969 101; %e A227969 41, 271; %e A227969 7, 13; %e A227969 239, 4649; %e A227969 73, 137; %e A227969 81, 333667; %e A227969 9091; %e A227969 21649, 513239; %e A227969 9901; %e A227969 53, 79, 265371653; %o A227969 (PARI) go(n)=my(v=[],P=[],E=[],t,ok); for(k=1,n, t=setminus(factor(10^k-1)[,1]~,P); E=concat(E,vector(#t,i,1)); P=concat(P,t); E=apply(i->E[i],Vec(vecsort(P,,1))); P=vecsort(P); ok=1; while(ok, ok=0; for(i=1,#P,if(znorder(Mod(10,P[i]^(E[i]+1)))==k, E[i]++; t=concat(t,P[i]^E[i]); ok=1))); v=concat(v,t=vecsort(t)); print(k" "t)); v \\ _Charles R Greathouse IV_, Aug 01 2013 %Y A227969 Cf. A002371, A046107. %K A227969 nonn,tabf,base %O A227969 1,1 %A A227969 _J. Lowell_, Aug 01 2013 %E A227969 a(9)-a(43) from _Charles R Greathouse IV_, Aug 01 2013