A227972 Two column recursive array A(n,k), relating expressions based on half-squares (A007590) to each other and several other sequences, read by rows.
1, 0, 1, 1, 1, 2, 3, 4, 5, 7, 7, 10, 17, 24, 29, 41, 41, 58, 99, 140, 169, 239, 239, 338, 577, 816, 985, 1393, 1393, 1970, 3363, 4756, 5741, 8119, 8119, 11482, 19601, 27720, 33461, 47321, 47321, 66922, 114243, 161564, 195025, 275807, 275807, 390050, 665857, 941664, 1136689, 1607521
Offset: 1
Keywords
Examples
The two column array with row number n and the row sum. An extra column on the right shows which expression is applicable to get that row's values: either floor(m^2/2 + 1) indicated as "+1", or floor(m^2/2 - 1) indicated as "-1". (NOTE: The value of n is immaterial, except as a row number). The array begins: Row k=1 k=2 Applicable "Half-Square" n (sqrt) (m) Row Sum Expression 1 1 0 1 +1 2 1 1 2 +1 3 1 2 3 -1 4 3 4 7 +1 5 5 7 12 +1 6 7 10 17 -1 7 17 24 41 +1 8 29 41 70 +1 9 41 58 99 -1 10 99 140 239 +1 11 169 239 408 +1 12 239 338 577 -1 13 577 816 1393 +1 14 985 1393 2378 +1 15 1393 1970 3363 -1 16 3363 4756 8119 +1 17 5741 8119 13860 +1 18 8119 11482 19601 -1 19 19601 27720 47321 +1 20 33461 47321 80782 +1
Crossrefs
Formula
Initialize row 1 as A(1,1) = 1 and A(1,2) = 0, then:
For rows at n mod 3 = 0: A(n,1) = A(n-1, 2)
A(n,2) = A(n, 1) + A(n-2, 1)
For rows at n mod 3 = 1: A(n,1) = A(n-1, 1) + A(n-1, 2)
A(n,2) = A(n, 1) + A(n-1, 1)
For rows at n mod 3 = 2: A(n,1) = A(n-1,1) + A(n-3, 1)
A(n,2) = A(n-1,1) + A(n-1, 2)
Empirical g.f.: -x*(2*x^11-x^10-x^9+x^8-4*x^7+3*x^6-2*x^5-x^4-x^3-x^2-1) / ((x^6-2*x^3-1)*(x^6+2*x^3-1)). - Colin Barker, Aug 08 2013
Extensions
Some additional comments by Richard R. Forberg, Aug 12 2013
Comments