This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227976 #12 Jun 16 2016 21:53:52 %S A227976 561,1595,35,6,21,6,15,14,21,10,35,22,33,14,15,133,65,34,51,38,21,22, %T A227976 95,46,69,26,115,217,161,30,87,62,33,34,35,1247,217,38,39,817,185,42, %U A227976 123,86,129,46,215,94,141,1247,51,1802,329,106,55,1541,57,58,371 %N A227976 Minimum composite squarefree numbers k such that p(i)-n divides k-n, for n=1, 2, 3, 4,..., where p(i) are the prime factors of k. %H A227976 Paolo P. Lava, <a href="/A227976/b227976.txt">Table of n, a(n) for n = 1..200</a> %e A227976 For n=2 the minimum k is 1595. Prime factors of 1595 are 5, 11, and 29. We have 1595 - 2 = 1593, 5 - 2 = 2 and 1593 / 3 = 531, 11 - 2 = 9 and 1593 / 9 = 177, 29 - 2 = 27 and 1593 / 27 = 59. %p A227976 with(numtheory); P:=proc(i) local c, d, k, n, ok, p; for k from 1 to i do %p A227976 for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; %p A227976 for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=k then ok:=0; break; fi; %p A227976 if not type((n-k)/(p[d][1]-k), integer) then ok:=0; break; fi; od; %p A227976 if ok=1 then print(n); break; fi; fi; od; od; end: P(10^6); %Y A227976 Cf. A208728, A225702-A225720, A227973-A227974. %K A227976 nonn %O A227976 1,1 %A A227976 _Paolo P. Lava_, Aug 06 2013