A227977 Numbers n for which n = sigma*(x) = sigma*(y), where n = x + y and sigma*(n) is the sum of the anti-divisors of n.
154, 3136, 5536, 20066, 136036, 9550080, 78011830
Offset: 1
Keywords
Examples
n = 20066 = 9698 + 10368. Anti-divisors of 9698 are 3, 4, 5, 7, 9, 15, 17, 45, 52, 119, 163, 431, 1141, 1293, 1492, 2155, 2771, 3879, 6465 and their sum is 20066 that is equal to n. Anti-divisors of 10368 are 5, 11, 13, 29, 55, 65, 89, 143, 145, 233, 256, 319, 377, 715, 768, 1595, 1885, 2304, 4147, 6912 and their sum is 20066 that is equal to n.
Programs
-
Maple
with(numtheory); P:=proc(q) local a,b, i, j, k, n; for n from 1 to q do for i from 1 to trunc(n/2) do k:=0; j:=i; while j mod 2<>1 do k:=k+1; j:=j/2; od; a:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2; k:=0; j:=n-i; while j mod 2<>1 do k:=k+1; j:=j/2; od; b:=sigma(2*(n-i)+1)+sigma(2*(n-i)-1)+sigma((n-i)/2^k)*2^(k+1)-6*(n-i)-2; if a=b and a=n then print(n); fi; od; od; end: P(10^6);
Extensions
a(5)-a(7) from Giovanni Resta, Oct 08 2013
Comments