This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227988 #42 Sep 29 2024 03:09:22 %S A227988 3,5,2,7,0,0,0,4,7,1,8,5,2,9,5,2,8,2,9,7,6,1,5,3,6,7,9,1,7,6,9,3,2,6, %T A227988 2,0,3,7,6,3,5,6,4,3,4,4,9,5,2,4,0,8,2,7,7,6,0,5,7,1,7,8,2,0,6,1,9,2, %U A227988 1,5,4,6,3,8,0,4,1,8,8,6,1,4,8,2,3,4,1 %N A227988 Decimal expansion of Sum_{n >= 1} sigma_1(n)/n!. %C A227988 Problem No. 45 from P. Erdős (see the 1963 link). The problem is "is Sum_{n >= 1} sigma_k(n)/n! an irrational number where sigma_k(n) is the sum of the k-th power of divisors of n?" This property has been proved with k = 1 and 2 (see Breusch link for the proof). %D A227988 R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B14. %H A227988 P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1961-22.pdf">Some unsolved problems</a>, Publ. Inst. Hung. Acad. Sci. 6 (1961), 221-259. %H A227988 P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1963-14.pdf">Quelques problèmes de théorie des nombres</a> (in French), Monographies de l'Enseignement Mathématique, No. 6, pp. 81-135, L'Enseignement Mathématique, Université, Geneva, 1963. %H A227988 P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1988-22.pdf">On the irrationality of certain series: problems and results</a>, in New advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 102-109. %H A227988 P. Erdős & M. Kac, <a href="http://www.jstor.org/stable/2306485">Problem 4518</a>, Amer. Math. Monthly 60(1953) 47. <a href="http://www.jstor.org/stable/2306405">Solution</a> R. Breusch, 61 (1954) 264-265. %e A227988 3.52700047185295282976153... %p A227988 with(numtheory):Digits:=200: s:=evalf(sum('sigma(i)/i!', 'i'=1..500)):print(s): %t A227988 RealDigits[N[Sum[DivisorSigma[1,n]/n!, {n, 0, 500}], 200]][[1]] %o A227988 (PARI) suminf(n=1, sigma(n)/n!) \\ _Michel Marcus_, Sep 16 2017 %Y A227988 Cf. A000203, A227989. %K A227988 nonn,cons %O A227988 1,1 %A A227988 _Michel Lagneau_, Aug 02 2013