This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227996 #20 Apr 04 2017 03:16:14 %S A227996 1,4,41,414,4431,48699,545076,6179444,70725241,815437894,9456840276, %T A227996 110196725574,1289162119401,15131911395879,178121845513281, %U A227996 2101890841202799,24856330289305726,294500697587787599,3495147445120811176,41542892270532317969,494440478133277365001 %N A227996 Alternate partial sums of the binomial coefficients C(5*n,n). %C A227996 Generally (for p>1), alternate partial sums of the binomial coefficients C(p*n,n) is asymptotic to (1/(1+(p-1)^(p-1)/p^p)) * sqrt(p/(2*Pi*n*(p-1))) * (p^p/(p-1)^(p-1))^n. %H A227996 G. C. Greubel, <a href="/A227996/b227996.txt">Table of n, a(n) for n = 0..900</a> %F A227996 Recurrence: 8*n*(2*n-1)*(4*n-3)*(4*n-1)*a(n) = (2869*n^4 - 5866*n^3 + 4199*n^2 - 1226*n + 120)*a(n-1) + 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-2). %F A227996 a(n) ~ 5^(5*n+11/2)/(3381*sqrt(Pi*n)*2^(8*n+3/2)). %t A227996 Table[Sum[Binomial[5*k, k]*(-1)^(n-k), {k, 0, n}], {n, 0, 20}] %o A227996 (PARI) for(n=0,50, print1(sum(k=0,n, binomial(5*k,k)), ", ")) \\ _G. C. Greubel_, Apr 03 2017 %Y A227996 Cf. A054108(n-1) (p=2), A188676 (p=3), A227995 (p=4). %K A227996 nonn,easy %O A227996 0,2 %A A227996 _Vaclav Kotesovec_, Aug 06 2013