cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227997 Triangular array read by rows. T(n,k) is the number of square lattice walks that start and end at the origin after 2n steps having k primitive loops; n>=1, 1<=k<=n.

This page as a plain text file.
%I A227997 #32 Apr 26 2016 12:32:12
%S A227997 4,20,16,176,160,64,1876,1808,960,256,22064,22048,13248,5120,1024,
%T A227997 275568,282528,182528,83456,25600,4096,3584064,3747456,2542464,
%U A227997 1284096,481280,122880,16384,47995476,50981136,35851968,19365120,8186880,2617344,573440,65536,657037232,707110432,511288256,290053120,133084160,48799744,13647872,2621440,262144,9150655216,9958458656,7363711104,4338317824,2113592320,851398656,276856832,68943872,11796480,1048576
%N A227997 Triangular array read by rows.  T(n,k) is the number of square lattice walks that start and end at the origin after 2n steps having k primitive loops; n>=1, 1<=k<=n.
%C A227997 The walk consists of steps in the four directions NW,NE,SW,SE. A primitive loop is a walk that starts and ends at the origin but does not otherwise touch the origin.
%C A227997 Row sums are A002894.
%C A227997 Column 1 is A054474
%H A227997 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 90.
%F A227997 G.f.: 1/( 1 - y*(1 - 1/A(x)) ) where A(x) is the o.g.f. for A002894.
%e A227997 4,
%e A227997 20, 16,
%e A227997 176, 160, 64,
%e A227997 1876, 1808, 960, 256,
%e A227997 22064, 22048, 13248, 5120, 1024,
%e A227997 275568, 282528, 182528, 83456, 25600, 4096
%t A227997 nn=6;a=Sum[Binomial[2n,n]^2x^n,{n,0,nn}];Map[Select[#,#>0&]&,Drop[CoefficientList[Series[1/(1-y(1-1/a)),{x,0,nn}],{x,y}],1]]//Grid
%K A227997 nonn,walk,tabl
%O A227997 1,1
%A A227997 _Geoffrey Critzer_, Oct 04 2013