cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225605 a(1) = least k such that 1/3 < H(k) - 1/3; a(2) = least k such that H(a(1)) - H(3) < H(k) - H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.

Original entry on oeis.org

5, 9, 16, 29, 53, 97, 178, 327, 601, 1105, 2032, 3737, 6873, 12641, 23250, 42763, 78653, 144665, 266080, 489397, 900141, 1655617, 3045154, 5600911, 10301681, 18947745, 34850336, 64099761, 117897841, 216847937, 398845538, 733591315, 1349284789, 2481721641
Offset: 1

Views

Author

Clark Kimberling, Aug 03 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <=y. Let a(1) = least k such that H(y) - H(x-1) < H(k) - H(y); let a(2) = least k such that H(a(1)) - H(y) < H(k) - H(a(1)); and for n > 2, let a(n) = least k such that greatest such H(a(n-1)) - H(a(n-2)) < H(k) - H(a(n-1)). The increasing sequences H(a(n)) - H(a(n-1)) and a(n)/a(n-1) converge. For what choices of (x,y) is the sequence a(n) linearly recurrent?
For A225605, (x,y) = (3,3); it appears that H(a(n)) - H(a(n-1)) approaches 0.60937786343... ; it is conjectured a(n)/a(n-1) approaches the constant given at A058265..

Examples

			The first two values (a(1),a(2)) = (5,9) match the beginning of the following inequality chain:
  1/3 < 1/4 + 1/5 < 1/6 + 1/7 + 1/8 + 1/9 < ...
		

Crossrefs

Programs

  • Mathematica
    z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 3;
    a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
    m = Map[a, Range[z]] (* A225605, Peter J. C. Moses, Jul 12 2013 *)

Formula

a(n) = A192804(n+4) (conjectured).
a(n) = 2*a(n-1) - a(n-4) (conjectured).
G.f.: (5 - x - 2 x^2 - 3 x^3)/(1 - 2 x + x^4) (conjectured)

A228025 a(1) = least k such that 1/2+1/3+1/4+1/5 < H(k) - H(5); a(2) = least k such that H(a(1)) - H(5) < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.

Original entry on oeis.org

20, 76, 285, 1065, 3976, 14840, 55385, 206701, 771420, 2878980, 10744501, 40099025, 149651600, 558507376, 2084377905, 7779004245, 29031639076, 108347552060, 404358569165, 1509086724601, 5631988329240, 21018866592360, 78443478040201, 292755045568445
Offset: 1

Views

Author

Clark Kimberling, Aug 03 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <=y. Let a(1) = least k such that H(y) - H(x-1) < H(k) - H(y); let a(2) = least k such that H(a(1)) - H(y) < H(k) - H(a(1)); and for n > 2, let a(n) = least k such that greatest such H(a(n-1)) - H(a(n-2)) < H(k) - H(a(n-1)). The increasing sequences H(a(n)) - H(a(n-1)) and a(n)/a(n-1) converge. For what choices of (x,y) is the sequence a(n) linearly recurrent?
For A228025, (x,y) = (2,5); it appears that H(a(n)) - H(a(n-1)) approaches log(2 + sqrt(3)) and that and a(n)/a(n-1) approaches sqrt(3).

Examples

			The first two values (a(1),a(2)) = (20,76) match the beginning of the following inequality chain:  1/2+1/3+1/4+1/5 < 1/6+...+1/20 < 1/21+...+1/76 < ...
		

Crossrefs

Programs

  • Mathematica
    z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 2; y = 5;
    a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]},      WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];
    m = Map[a, Range[z]] (* A227653, Peter J. C. Moses, Jul 12 2013 *)

Formula

a(n) = A061278(n+1) (conjectured).
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) (conjectured).
G.f.: (-20 + 24 x - 5 x^2)/(-1 + 5 x - 5 x^2 + x^3) (conjectured).
Showing 1-2 of 2 results.