cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228049 Decimal expansion of sum of reciprocals, column 3 of the natural number array, A185787.

Original entry on oeis.org

7, 9, 8, 4, 1, 0, 5, 5, 1, 0, 1, 6, 8, 7, 8, 0, 0, 3, 8, 6, 5, 2, 6, 6, 5, 1, 7, 5, 6, 1, 3, 2, 6, 5, 8, 1, 6, 6, 2, 7, 9, 3, 1, 6, 1, 9, 5, 4, 9, 8, 8, 5, 5, 7, 4, 1, 5, 2, 8, 6, 8, 7, 1, 8, 1, 1, 5, 7, 7, 8, 3, 0, 9, 5, 1, 4, 3, 1, 1, 1, 3, 3, 5, 4, 1, 9
Offset: 0

Views

Author

Clark Kimberling, Aug 06 2013

Keywords

Comments

Let s(n) be the sum of reciprocals of the numbers in row n of the array T at A185787 given by T(n,k) = n + (n+k-2)(n+k-1)/2, and let r = (2*pi/sqrt(7))*tanh(pi*sqrt(7)/2), as at A226985. Then s(1) = r, and s(2) to s(5) are given by A228044 to A228047.
Let c(n) be the sum of reciprocals of the numbers in column n of T. Then c(1) = 2; c(2) = 11/9, c(4) = 29/50, and c(3) is given by A228049. Let d(n) be the sum of reciprocals of the numbers in the main diagonal, (T(n,n)); then d(2) = (1/12)*(pi)^2; d(3) = 1/2, and d(1) is given by A228048.

Examples

			1/4 + 1/8 + 1/13 + ... = (1/34)(17 + 8r*tan(r)), where r = (pi/2)sqrt(17)
1/4 + 1/8 + 1/13 + ... = 0.79841055101687800386526651756132658166...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[n, 3], {n, 1, Infinity}], 130]; RealDigits[u, 10]
  • PARI
    sumnumrat(2/(n^2+5*n+2),1) \\ Charles R Greathouse IV, Feb 08 2023