A228049 Decimal expansion of sum of reciprocals, column 3 of the natural number array, A185787.
7, 9, 8, 4, 1, 0, 5, 5, 1, 0, 1, 6, 8, 7, 8, 0, 0, 3, 8, 6, 5, 2, 6, 6, 5, 1, 7, 5, 6, 1, 3, 2, 6, 5, 8, 1, 6, 6, 2, 7, 9, 3, 1, 6, 1, 9, 5, 4, 9, 8, 8, 5, 5, 7, 4, 1, 5, 2, 8, 6, 8, 7, 1, 8, 1, 1, 5, 7, 7, 8, 3, 0, 9, 5, 1, 4, 3, 1, 1, 1, 3, 3, 5, 4, 1, 9
Offset: 0
Examples
1/4 + 1/8 + 1/13 + ... = (1/34)(17 + 8r*tan(r)), where r = (pi/2)sqrt(17) 1/4 + 1/8 + 1/13 + ... = 0.79841055101687800386526651756132658166...
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[n, 3], {n, 1, Infinity}], 130]; RealDigits[u, 10]
-
PARI
sumnumrat(2/(n^2+5*n+2),1) \\ Charles R Greathouse IV, Feb 08 2023
Comments