This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228053 #12 May 11 2025 23:47:56 %S A228053 -1,1,1,-1,2,-1,1,1,1,1,-1,2,2,2,-1,1,1,4,4,1,1,-1,2,5,8,5,2,-1,1,1,7, %T A228053 13,13,7,1,1,-1,2,8,20,26,20,8,2,-1,1,1,10,28,46,46,28,10,1,1,-1,2,11, %U A228053 38,74,92,74,38,11,2,-1,1,1,13,49,112,166,166,112 %N A228053 A triangle formed like Pascal's triangle, but with (-1)^(n+1) on the borders instead of 1. %C A228053 This sequence is almost the same as A026637. %C A228053 T(n,k) = A026637(n-2,k-1) for n > 3, 1 < k < n-1. - _Reinhard Zumkeller_, Aug 08 2013 %H A228053 T. D. Noe, <a href="/A228053/b228053.txt">Rows n = 0..50 of triangle, flattened</a> %e A228053 Triangle begins: %e A228053 -1, %e A228053 1, 1, %e A228053 -1, 2, -1, %e A228053 1, 1, 1, 1, %e A228053 -1, 2, 2, 2, -1, %e A228053 1, 1, 4, 4, 1, 1, %e A228053 -1, 2, 5, 8, 5, 2, -1, %e A228053 1, 1, 7, 13, 13, 7, 1, 1, %e A228053 -1, 2, 8, 20, 26, 20, 8, 2, -1, %e A228053 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, %e A228053 -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1 %t A228053 t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = (-1)^(n+1), m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t] %o A228053 (Haskell) %o A228053 a228053 n k = a228053_tabl !! n !! k %o A228053 a228053_row n = a228053_tabl !! n %o A228053 a228053_tabl = iterate (\row@(i:_) -> zipWith (+) %o A228053 ([- i] ++ tail row ++ [0]) ([0] ++ init row ++ [- i])) [- 1] %o A228053 -- _Reinhard Zumkeller_, Aug 08 2013 %Y A228053 Cf. A007318 (Pascal's triangle), A026637 (many terms in common). %Y A228053 Cf. A051601 (n on the borders), A137688 (2^n on borders). %Y A228053 Cf. A097073 (row sums). %Y A228053 Cf. A227074 (4^n edges), A227075 (3^n edges), A227076 (5^n edges). %K A228053 sign,tabl %O A228053 0,5 %A A228053 _T. D. Noe_, Aug 07 2013