A228067 Difference of consecutive integers nearest to Li(10^n) - Li(2), where Li(x) = integral(0..x, dt/log(t)) (A190802, known as Gauss' approximation for the number of primes below 10^n).
5, 24, 148, 1068, 8384, 68998, 586290, 5097291, 45087026, 404206380, 3663010786, 33489883880, 308457695529, 2858876419882, 26639629409596, 249393772773269, 2344318821362265, 22116397144079593, 209317713066531967, 1986761935407441102
Offset: 1
Keywords
Examples
For n = 1, A190802(1) - A190802(0) = 5-0 = 5.
Links
- Vladimir Pletser, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Prime Counting Function
- Eric Weisstein's World of Mathematics, Logarithmic Integral
Comments