cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228068 Difference between the number of primes with n digits (A006879) and the difference of consecutive integers nearest to Li(10^n) - Li(2) (see A228067).

This page as a plain text file.
%I A228068 #15 Feb 16 2025 08:33:20
%S A228068 -1,-3,-5,-7,-21,-92,-209,-415,-947,-1403,-8484,-26675,-70708,-205919,
%T A228068 -737729,-2162013,-4741957,-13992966,-77928220,-122866869,-374649610,
%U A228068 -1334960954,-5317831008,-9896721062,-38014073661
%N A228068 Difference between the number of primes with n digits (A006879) and the difference of consecutive integers nearest to Li(10^n) - Li(2) (see A228067).
%C A228068 The sequence A006879(n) is always < A228067(n) for 1 <= n <= 25.
%C A228068 The sequence (A228067) yields an average relative difference in absolute value, i.e., average(abs(A228068(n))/A006879(n) = 0.0175492... for 1 <= n <= 25.
%C A228068 Note that A190802(n) = (Li(10^n) - Li(2)) is not defined for n=0. Its value is set arbitrarily to 0.
%H A228068 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeCountingFunction.html">Prime Counting Function</a>
%H A228068 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LogarithmicIntegral.html">Logarithmic Integral</a>
%F A228068 a(n) = A006879(n) - A228067(n).
%Y A228068 Cf. A006880, A006879, A228067, A228066.
%K A228068 sign
%O A228068 1,2
%A A228068 _Vladimir Pletser_, Aug 06 2013