cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228080 (5*n+2)!/(2*(n!)^5), n >= 0.

This page as a plain text file.
%I A228080 #15 Jul 27 2022 08:36:01
%S A228080 1,2520,7484400,22870848000,70579794285000,218799620836917120,
%T A228080 679953587124305894400,2116187746296592370688000,
%U A228080 6592431144164903462359935000,20550499897066845200729434200000,64091912654977017603465324370118400,199956261330234671205699024876891648000
%N A228080 (5*n+2)!/(2*(n!)^5), n >= 0.
%C A228080 Although limit( a(n)^(1/n), n=infinity ) = 5^5, apparently this sequence is not a Hausdorff moment sequence of any positive function on (0,5^5).
%F A228080 In Maple notation:
%F A228080 O.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1], 5^5*z);
%F A228080 E.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1, 1], 5^5*z);
%F A228080 Asymptotics: a(n) -> (25*n^2+5*n-2)*(5^(5*n+1/2))* n^(-2)/(8*Pi^2), for n -> infinity.
%F A228080 D-finite with recurrence (n^4)*a(n) -5*(5*n+1)*(5*n+2)*(5*n-2)*(5*n-1)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022
%p A228080 seq((5*n+2)!/(2*(n!)^5), n=0..11).
%t A228080 Table[(5n+2)!/(2(n!)^5),{n,0,15}] (* _Harvey P. Dale_, Aug 04 2019 *)
%Y A228080 Cf. A002544.
%K A228080 nonn
%O A228080 0,2
%A A228080 _Karol A. Penson_, Aug 09 2013