This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228097 #29 Feb 24 2025 04:35:02 %S A228097 30,50,75,120,195,200,260,270,300,340,450,480,510,525,585,675,700,750, %T A228097 765,780,800,845,1014,1015,1040,1080,1156,1200,1250,1360,1365,1470, %U A228097 1530,1554,1740,1755,1800,1845,1875,1920,2040,2100,2210,2220,2275,2340,2430 %N A228097 Integer areas of excentral triangles of integer-sided triangles. %C A228097 The excentral triangle, also called the tritangent triangle, of a triangle ABC is the triangle IJK with vertices corresponding to the excenters of ABC. %C A228097 The excentral triangle has side lengths: %C A228097 a' = a*csc(A/2) where csc(z)=1/sin(z); %C A228097 b' = b*csc(B/2); %C A228097 c' = c*csc(C/2); %C A228097 and area: %C A228097 A' = 4*A*a*b*c/((a+b-c)*(a-b+c)*(-a+b+c)). %C A228097 Property of this sequence: %C A228097 The areas of the original triangles are integers. The primitive triangles with areas a(n) are 30, 50, 75, 195, ... %C A228097 The non-primitive triangles with areas 4*a(n) are in the sequence. %C A228097 The following table gives the first values (A', A, a, b, c) where A' is the area of the excentral triangles, A is the area of the reference triangles ABC, a, b, c the integer sides of the original triangles ABC. %C A228097 ---------------------- %C A228097 | A'| A | a| b| c| %C A228097 ---------------------- %C A228097 | 30| 6| 3| 4| 5| %C A228097 | 50| 12| 5| 5| 6| %C A228097 | 75| 12| 5| 5| 8| %C A228097 |120| 24| 6| 8| 10| %C A228097 |195| 30| 5| 12| 13| %C A228097 |200| 48| 10| 10| 12| %C A228097 |260| 24| 4| 13| 15| %C A228097 |270| 54| 9| 12| 15| %C A228097 |300| 48| 10| 10| 16| %C A228097 |340| 60| 8| 15| 17| %C A228097 ...................... %D A228097 Clark Kimberling, Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998. %H A228097 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ExcentralTriangle.html">Excentral Triangles</a> %e A228097 30 is in the sequence because the area A' = 4*A*a*b*c/((a+b-c)*(a-b+c)*(-a+b+c)) of the excentral triangle corresponding to the initial triangle (3,4,5) is A' = 4*6*3*4*5/((3+4-5)*(3-4+5)*(-3+4+5)) = 30, where A = 6 obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(6*(6-3)*(6-4)*(6-5)) = 6, and where s = 6 is the semiperimeter. %e A228097 The sides of the excentral triangle are: %e A228097 a' = 3*csc(1/2*arcsin(3/5)) = 9.48683298... %e A228097 b' = 4*csc(1/2*arcsin(4/5)) = 8.94427191... %e A228097 c' = 5*sqrt(2) = 7.07106781... %t A228097 nn = 500; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))], AppendTo[lst, 4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))]]], {a, nn}, {b, a}, {c, b}]; Union[lst] %Y A228097 Cf. A188158, A227879. %K A228097 nonn %O A228097 1,1 %A A228097 _Michel Lagneau_, Oct 26 2013