cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228098 Number of primes p > prime(n) and such that prime(n)*p < prime(n+1)^2.

This page as a plain text file.
%I A228098 #46 Feb 16 2025 08:33:20
%S A228098 1,2,1,3,1,2,1,1,2,1,3,2,1,1,2,2,1,3,2,1,2,1,1,3,2,1,2,1,1,4,1,2,1,3,
%T A228098 1,2,2,1,2,2,1,4,1,2,1,2,4,2,1,1,2,1,2,2,2,2,1,3,2,1,1,4,2,1,1,2,1,3,
%U A228098 1,1,1,2,2,2,1,1,2,1,1,2,1,3,1,2,1,1,3
%N A228098 Number of primes p > prime(n) and such that prime(n)*p < prime(n+1)^2.
%C A228098 For n > 1, a(n)+1 is the number of composite numbers < prime(n+1)^2 and removed at the n-th step of Eratosthenes's sieve. The exception for n=1 comes from prime(1)^3 = 2^3 = 8 < prime(2)^2 = 9. This does not occur any more because prime(n)^3 > prime(n+1)^2 for all n > 1.
%C A228098 a(n) is related to the distribution of primes around prime(n+1). High values correspond to a large gap before prime(n+1) followed by several small gaps after prime(n+1).
%C A228098 a(n) >= 1 for all n, because prime(n+1) always trivially satisfies the condition. The sequence tends to alternate high and low values, and takes its minimum value 1 about half the time.
%C A228098 a(n) is >= and almost always equal to a'(n), defined as the number of primes between prime(n+1) (inclusive) and prime(n+1) + gap(n) (inclusive), with gap(n) = prime(n+1) - prime(n) = A001223(n).
%C A228098 An exception is 7, for which a(7) = 3, while the following prime is 11, thus gap(7) = 4, and there are only two primes between 11 and 11 + 4 = 15. It is probably the only one, as it is easily seen that a(n) = a'(n) if gap(n) <= sqrt(2*prime(n)), which is a condition a little stronger than Andrica's Conjecture: gap(n) < 2*sqrt(prime(n))+1. 7 is probably a record for the ratio gap(n)/sqrt(prime(n)), and the only prime for which it is > sqrt(2) (see A079296 for an ordering of primes according to Andrica's conjecture).
%H A228098 Jean-Christophe Hervé, <a href="/A228098/b228098.txt">Table of n, a(n) for n = 1..9999</a>
%H A228098 C. K. Caldwell, <a href="http://www.utm.edu/research/primes/notes/gaps.html">Gaps between primes</a>.
%H A228098 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/AndricasConjecture.html">Andrica's Conjecture</a>
%H A228098 Wikipedia, <a href="http://en.wikipedia.org/wiki/Andrica&#39;s_conjecture">Andrica's conjecture</a>
%H A228098 Marek Wolf, <a href="http://arxiv.org/abs/1010.3945">A note on the Andrica conjecture</a>, arXiv:1010.3945 [math.NT], 2010.
%e A228098 a(4)=3 because prime(4)=7, prime(5)=11, 11^2=121, and 7*11 < 7*13 < 7*17 < 121 < 7*19.
%t A228098 Table[PrimePi[Prime[n + 1]^2/Prime[n]] - n, {n, 100}] (* _T. D. Noe_, Oct 29 2013 *)
%o A228098 (Sage)
%o A228098 P = Primes()
%o A228098 def a(n):
%o A228098     p=P.unrank(n-1)
%o A228098     p1=P.unrank(n)
%o A228098     L=[q for q in [p+1..p1^2] if q in Primes() and p*q<p1^2]
%o A228098     return len(L)
%o A228098 k=100 #change k for more terms
%o A228098 [a(m) for m in [1..k]] # _Tom Edgar_, Oct 29 2013
%Y A228098 Cf. A000040, A001223, A083140, A079296.
%K A228098 nonn,easy
%O A228098 1,2
%A A228098 _Jean-Christophe Hervé_, Oct 26 2013