This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228110 #45 Apr 01 2017 21:02:02 %S A228110 0,1,0,1,2,1,0,1,2,3,2,1,0,1,2,1,2,3,4,5,4,3,2,1,0,1,2,3,2,3,4,5,6,7, %T A228110 6,5,4,3,2,1,0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4, %U A228110 3,2,1,0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 %N A228110 Height after n-th step of the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, n >= 0, k >= 1. %C A228110 The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region. %C A228110 For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below: %C A228110 . %C A228110 . j Diagram 1 Partitions Diagram 2 %C A228110 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ %C A228110 . 15 |_ _ _ _ | 7 _ _ _ _ | %C A228110 . 14 |_ _ _ _|_ | 4+3 _ _ _ _|_ | %C A228110 . 13 |_ _ _ | | 5+2 _ _ _ | | %C A228110 . 12 |_ _ _|_ _|_ | 3+2+2 _ _ _|_ _|_ | %C A228110 . 11 |_ _ _ | | 6+1 _ _ _ | | %C A228110 . 10 |_ _ _|_ | | 3+3+1 _ _ _|_ | | %C A228110 . 9 |_ _ | | | 4+2+1 _ _ | | | %C A228110 . 8 |_ _|_ _|_ | | 2+2+2+1 _ _|_ _|_ | | %C A228110 . 7 |_ _ _ | | | 5+1+1 _ _ _ | | | %C A228110 . 6 |_ _ _|_ | | | 3+2+1+1 _ _ _|_ | | | %C A228110 . 5 |_ _ | | | | 4+1+1+1 _ _ | | | | %C A228110 . 4 |_ _|_ | | | | 2+2+1+1+1 _ _|_ | | | | %C A228110 . 3 |_ _ | | | | | 3+1+1+1+1 _ _ | | | | | %C A228110 . 2 |_ | | | | | | 2+1+1+1+1+1 _ | | | | | | %C A228110 . 1 |_|_|_|_|_|_|_| 1+1+1+1+1+1+1 | | | | | | | %C A228110 . %C A228110 . 1 2 3 4 5 6 7 %C A228110 . %C A228110 The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1. %C A228110 Also the diagram has the property that it can be transformed in a Dyck path (see example). %C A228110 The sequence gives the height of the infinite Dyck path after n-th step. %C A228110 The absolute values of the first differences give A000012. %C A228110 For the height of the peaks and the valleys in the infinite Dyck path see A229946. %C A228110 Q: Is this infinite Dyck path a fractal? %H A228110 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa408.jpg">Visualization of regions in a diagram for A006128</a> %e A228110 Illustration of initial terms (n = 1..59): %e A228110 . %e A228110 11 ........................................................... %e A228110 . / %e A228110 . / %e A228110 . / %e A228110 7 .................................. / %e A228110 . /\ / %e A228110 5 .................... / \ /\/ %e A228110 . /\ / \ /\ / %e A228110 3 .......... / \ / \ / \/ %e A228110 2 ..... /\ / \ /\/ \ / %e A228110 1 .. /\ / \ /\/ \ / \ /\/ %e A228110 . /\/ \/ \/ \/ \/ %e A228110 . %e A228110 Note that the j-th largest peak between two valleys at height 0 is also the partition number A000041(j). %e A228110 Written as an irregular triangle in which row k has length 2*A138137(k), the sequence begins: %e A228110 0,1; %e A228110 0,1,2,1; %e A228110 0,1,2,3,2,1; %e A228110 0,1,2,1,2,3,4,5,4,3,2,1; %e A228110 0,1,2,3,2,3,4,5,6,7,6,5,4,3,2,1; %e A228110 0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1; %e A228110 0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1; %e A228110 ... %Y A228110 Column 1 is A000004. Both column 2 and the right border are in A000012. Both columns 3 and 5 are in A007395. %Y A228110 Cf. A000041, A006128, A135010, A138137, A139582, A141285, A182699, A182709, A186412, A194446, A194447, A193870, A206437, A207779, A211009, A211978, A211992, A220517, A225600, A225610, A229946. %K A228110 nonn,tabf %O A228110 0,5 %A A228110 _Omar E. Pol_, Aug 10 2013