This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228111 #22 Feb 24 2025 08:52:58 %S A228111 4,21,143,1063,8385,68929,584467,5074924,44885325,402777151, %T A228111 3656032622,33492393634,309106153431,2870123507479,26783122426197, %U A228111 250971797533095,2359952229466124,22256979400698116,210440626023838163,1994088284872617955,18931694933036811169 %N A228111 Integer nearest to (S(n)*F(4n)(S(n))), where F(4n)(x) are Fibonacci polynomials of multiple of 4 indices (4n) and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments). %C A228111 Coefficients are A=16103485019141/2900449771918928, B=5262046568827901/29305205016290, C(0)=296261685121849/265642652464758, C(1)=38398556529727/750568780742436, C(2)=0, C(3)=-11594434149768/8254020049890781. %C A228111 This sequence gives a good approximation of the number of primes with n digits (A006879); see (A228112). %C A228111 As the squares of odd-indexed Fibonacci numbers F(2n+1)(1) (see A227693) are equal or close to the first values of pi(10^n) (A006880), and as F(4n)(1)=(F(2n+1)(1))^2- (F(2n-1)(1))^2, it is legitimate to ask whether the first values of the differences pi(10^n)- pi(10^(n-1)) (A006879) are also close or equal to multiple of 4 index Fibonacci numbers F(4n)(1); e.g., for n=2, F(8)(1)=21. However, when using Fibonacci polynomials, the exact relation is xF(4n)(x)=(F(2n+1)(x))^2- (F(2n-1)(x))^2. %C A228111 To obtain this sequence, one switches to the product of x and multiple of 4 index Fibonacci polynomials F(4n)(x), and one obtains the sequence a(n) by computing x as a function of n such that (xF(4n)(x)) fit the values of pi(10^n)- pi(10^(n-1)) for 1 <= n <= 25, with pi(1)=0. %D A228111 John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144. %H A228111 Vladimir Pletser, <a href="/A228111/b228111.txt">Table of n, a(n) for n = 1..500</a> %H A228111 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci Polynomial</a>. %F A228111 a(n) = round(S(n)*F(4n)(S(n))), where S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i). %e A228111 For n=1, xF(4)(x) = x^2*(x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.11173... to obtain a(1) = round((1.11173...)*F(4)(1.11173...)) = 4. %e A228111 For n=2, xF(8)(x) = x^2*(x^2+2)*(x^4+4*x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.99998788... to obtain a(2) = round((0.99998788...)*F(8)(0.99998788...)) = 21. %p A228111 with(combinat):A:=16103485019141/2900449771918928: B:=5262046568827901/29305205016290: C(0):=296261685121849/265642652464758: C(1):=38398556529727/750568780742436: C(2):=0: C(3):=-11594434149768/8254020049890781: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(c(n)*fibonacci(4*n, c(n))), n=1..25); %Y A228111 Cf. A006879, A228112, A228113, A228114, A228115, A228116. %K A228111 nonn %O A228111 1,1 %A A228111 _Vladimir Pletser_, Aug 10 2013