A228125 Triangle read by rows: T(n,k) = number of semistandard Young tableaux with sum of entries equal to n and shape of tableau a partition of k.
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 5, 2, 1, 1, 6, 10, 9, 5, 2, 1, 1, 7, 14, 16, 10, 5, 2, 1, 1, 8, 19, 24, 19, 11, 5, 2, 1, 1, 9, 24, 37, 32, 21, 11, 5, 2, 1, 1, 10, 30, 51, 52, 38, 22, 11, 5, 2, 1, 1, 11, 37, 71, 79, 66, 41, 23, 11, 5, 2, 1, 1, 12, 44, 93, 117, 106, 74, 43, 23, 11, 5, 2, 1, 1, 13, 52, 122, 166, 166, 125, 80, 44, 23, 11, 5, 2, 1, 1, 14, 61, 153, 231, 251, 204, 139, 83, 45, 23, 11, 5, 2, 1, 1, 15, 70, 193, 311, 367, 322, 236, 147, 85, 45, 23, 11, 5, 2, 1
Offset: 1
Examples
T(6,3) = 7 since the 7 SSYT with sum of entries = 6 and shape any partition of 3 are 114 , 123 , 222 , 11 , 12 , 13 , 1 4 3 2 2 3 Triangle starts: 1; 1, 1; 1, 2, 1; 1, 3, 2, 1; 1, 4, 4, 2, 1; 1, 5, 7, 5, 2, 1; 1, 6, 10, 9, 5, 2, 1; 1, 7, 14, 16, 10, 5, 2, 1; 1, 8, 19, 24, 19, 11, 5, 2, 1; 1, 9, 24, 37, 32, 21, 11, 5, 2, 1; 1, 10, 30, 51, 52, 38, 22, 11, 5, 2, 1;
Programs
-
Mathematica
hooklength[(par_)?PartitionQ]:=Table[Count[par,q_ /; q>=j] +1-i +par[[i]] -j, {i,Length[par]}, {j,par[[i]]} ]; Table[Tr[(SeriesCoefficient[q^(#1 . Range[Length[#1]])/Times @@ (1-q^#1&) /@ Flatten[hooklength[#1]],{q,0,w}]&) /@ Partitions[n]],{w,24},{n,w}]
Comments