This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228126 #44 Jul 04 2025 11:49:21 %S A228126 2,3,4,9,20,24,98,170,1104,1274,2079,2255,3438,4233,4345,4716,5368, %T A228126 7105,7625,10620,13350,13775,14905,20220,21385,23408,25592,26123, %U A228126 28518,30457,34945,35167,38180,45548,49230,51911,52206,53456,56563,61456,65429,66585 %N A228126 Sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1. %C A228126 This is an extension to Ruth-Aaron pairs. Sum of prime factors (inclusive of multiplicity) of pair of Consecutive positive integers are also consecutive. %C A228126 The number of pairs less than 10^k (k=1,2,3,4,5,6,..) with this property are 4,7,8,19,55,149,... %C A228126 Up to 10^13 there are only 5 sets of consecutive terms, namely, (2, 3), (3,4), (27574665988, 27574665989), (862179264458, 1862179264459) and (9600314395008, 9600314395009). - _Giovanni Resta_, Dec 24 2013 %C A228126 The sum of reciprocals of this sequence is approximately equal to 1.3077. - _Abhiram R Devesh_, Jun 14 2014 %H A228126 Harvey P. Dale, <a href="/A228126/b228126.txt">Table of n, a(n) for n = 1..300</a> %H A228126 Giovanni Resta, <a href="http://www.numbersaplenty.com/set/eRAP/">eRAPs: the 446139 terms < 10^12</a> %H A228126 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_719.htm">Extension to Ruth Aaron pairs</a> %e A228126 For n=20: prime factors = 2,2,5; sum of prime factors = 9. %e A228126 For n+1=21: prime factors = 3,7; sum of prime factors = 10. %t A228126 spd[n_]:=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]]; Rest[ Position[ Partition[Array[spd,70000],2,1],_?(#[[2]]-#[[1]]==1&),{1}, Heads->False]//Flatten] (* _Harvey P. Dale_, Sep 07 2016 *) %o A228126 (Python) %o A228126 ## sumdivisors(n) is a function that would return the sum of prime %o A228126 ## divisors of n. (See A001414) %o A228126 i=2 %o A228126 while i < 100000: %o A228126 sdi=sumdivisors(i) %o A228126 sdip=sumdivisors(i+1) %o A228126 if sdi==sdip-1: %o A228126 print(i) %o A228126 i=i+1 %o A228126 (PARI) sopfm(n)=my(f=factor(n));sum(i=1,#f[,1],f[i,1]*f[i,2]) %o A228126 for(n=1,10^5,if(sopfm(n)==sopfm(n+1)-1,print1(n,","))) /* _Ralf Stephan_, Aug 12 2013 */ %Y A228126 Cf. A001414, A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1. %K A228126 easy,nonn %O A228126 1,1 %A A228126 _Abhiram R Devesh_, Aug 11 2013 %E A228126 More terms from _Ralf Stephan_, Aug 12 2013