This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228144 #17 Aug 16 2013 11:48:15 %S A228144 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,26, %T A228144 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,46,47,48,49, %U A228144 50,51,52,53,55,55,56,57,59,59,60,61,62,63,64,66,66,67,68,70 %N A228144 Smallest k > n such that j*10^k + m*10^n - 1 is a prime number for at least a pair {j,m} with 0 < j < 10 and 0 < m < 10. %C A228144 The prime numbers are the sum of a near repdigit number starting with the digit j followed by k digits 0 and a nearepdigit number starting with the digit (m-1) followed by n digits 9 for m>1, or for m=1 a repdigit number with n digits 9. %C A228144 The first primes are : %C A228144 109, 1399, 13999, 139999, 1199999, 16999999, 289999999, 2099999999, 10999999999, 239999999999, 1099999999999, 34999999999999, 349999999999999, 2399999999999999. %C A228144 Conjecture: there is always at least one k for each n. %H A228144 Pierre CAMI, <a href="/A228144/b228144.txt">Table of n, a(n) for n = 1..4000</a> %e A228144 1*10^1+1*10^2=109 prime so a(1)=2. %o A228144 PFGW & SCRIPTIFY %o A228144 SCRIPT %o A228144 DIM k %o A228144 DIM j %o A228144 DIM m %o A228144 DIM n, 0 %o A228144 DIMS t %o A228144 OPENFILEOUT myf, a(n, 3).txt %o A228144 LABEL a %o A228144 SET n, n+1 %o A228144 IF n>4000 THEN END %o A228144 SET j, n %o A228144 LABEL b %o A228144 SET j, j+1 %o A228144 SET k, 0 %o A228144 LABEL c %o A228144 SET k, k+1 %o A228144 IF k>9 THEN GOTO b %o A228144 SET m, 0 %o A228144 LABEL d %o A228144 SET m, m+1 %o A228144 IF m>9 THEN GOTO c %o A228144 IF 4*(k+m)%3==1 THEN GOTO d %o A228144 SETS t, %d, %d, %d, %d\,; n; k; j; m %o A228144 PRP m*10^n+j*10^k-1, t %o A228144 IF ISPRP THEN GOTO e %o A228144 GOTO d %o A228144 LABEL e %o A228144 WRITE myf, t %o A228144 GOTO a %Y A228144 Cf. A213790, A213883. %K A228144 nonn %O A228144 1,1 %A A228144 _Pierre CAMI_, Aug 14 2013