This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228151 #21 Sep 08 2022 08:46:05 %S A228151 1,1,1,2,3,6,5,30,105,70,35,70,231,2310,143,30030,15015,10010,85085, %T A228151 170170,373065,25194,323323,1939938,22309287,14872858,168245,74364290, %U A228151 15935205,223092870,1078282205,588153930,20056049013,5142576670,393255863,9550499530 %N A228151 Denominators of r(n) = r(n-1) + r(n-2) + B_(n-2), where B_n is the n-th Bernoulli number A027641(n)/A027642(n). %C A228151 r(n): 0, 0, 1, 1/2, 5/3, 13/6, 19/5, 179/30, 1028/105, 1103/70, 893/35,... = A227500(n)/a(n). a(0)=a(1)=1 is a choice. %o A228151 (PARI) r(n) = if (n<=1, 0, r(n-1) + r(n-2) + bernfrac(n-2)); %o A228151 a(n) = if (n<=1, 1, denominator(r(n))); \\ _Michel Marcus_, Aug 24 2013 %o A228151 (Magma) t:=40; r:=[n le 2 select 0 else Self(n-1)+Self(n-2)+BernoulliNumber(n-3): n in [1..t]]; [n le 2 select 1 else Denominator(r[n]): n in [1..t]]; // _Bruno Berselli_, Sep 05 2013 %Y A228151 Cf. A227500: numerators of r(n), where a(n) is named c(n). %Y A228151 Cf. A027641, A027642. %K A228151 nonn,frac %O A228151 0,4 %A A228151 _Paul Curtz_, Aug 13 2013 %E A228151 More terms from _Michel Marcus_, Aug 24 2013